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The ankle joint complex is a common source of injury for various demographics and

is often observed during gait analysis. I investigate using soft robotic sensors as a means

for collecting kinematic data at the ankle joint complex. I validate the linearity of these

sensors by measuring stretch against extension and against stretch from frontal and sagittal

planar foot movements using a wooden ankle mockup. I then conduct a study involving

ten participants who perform repetitive trials of four foot movements (plantarflexion, dor-

siflexion, inversion and eversion) using ten different locations. Four optimal locations were

identified for these movements based on linearity, accuracy, robustness, and consistency.

Lastly, I validated soft robotic sensors against the human gait cycle. Twenty participants

were recruited and performed twelve trials, walking across a flat surface and a cross-sloped

surface while motion capture data and soft robotic sensor data was collected.

Key words: soft robotic sensors, sensor placement, wearables, ankle joint complex, motion
capture, kinematics, gait analysis, multivariable linear modeling, data coupling
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CHAPTER 1

INTRODUCTION

Wearables can be defined as technologies used to measure various physiological and

kinematic parameters by being sported or borne by the user [60]. A common problem

identified after conducting 113 interviews from strength and conditioning coaches across

all levels of athletic competition identified their two biggest concerns with the current state

of wearable technology: (a) the lack of solutions that accurately capture data “from the

ground up” and (b) the lack of trust due to inconsistent measurements. Most data solutions

seem to capture data that is irrelevant or is not interpreted in a way that is useful to the end

user for making decisions. Some wearable devices mentioned were ones that utilized Iner-

tial Measurement Units (IMUs) and Global Positioning System (GPS) technology, noting

that the devices were inconsistent, intrusive, and unable to track quick changes of direc-

tions [59].

As wearable technology has advanced, gait analysis has become more prevalent for

the use of both clinical practice and biomechanical research. Wearables are gradually

becoming a more feasible replacement to multi-camera motion capture systems, which

have historically been used for gait analysis but are restricted to a laboratory setting, are

expensive, and are computationally intensive. As improvements have been made in terms
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of form-factor, power efficiency, and cost, wearable sensors have become more useful

for ambulatory gait analysis in sports, rehabilitation, and clinical diagnostics. Temporal

characteristics can be collected from the data to determine phase of the gait and have the

potential to determine if the user has medical problems [99].

1.1 Athlete Engineering Group: Closing the Wearable Gap

The Athlete Engineering Group was sparked out of the experience and insights gained

through a series of interviews that were conducted through the National Science Foun-

dation Partnerships for Innovation (NSF-PFI) I-Corps Program. Through having conver-

sations with 113 strength and conditioning coaches (S&CCs) and athletic trainers (ATs)

across the country, it was identified that there was a clear gap in the wearable technology

being developed and the end user. Many of the interviewees expressed frustrations with

the technology being inaccurate, inconsistent, invasive, and unable to communicate data in

a clear and meaningful way. This led to the development of a research group that sought

to work with athletics at MSU to get more value out of wearable technology, as well as

other existing technologies such as motion capture, to help S&CCs and ATs make more

informed, data-driven decisions that are useful and intentional.

Further, the group is seeking ways to develop wearable solutions that mitigate the prob-

lems commonly seen in most existing solutions today, such as inaccurate data (e.g. IMU

drift) and bulky form factor. Included in Athlete Engineering Group is not only the sports

athlete, but also the industrial athlete and the military athlete. Wearable solutions are con-

tinuing to be developed and investigated in industry and the military, and further research
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will be done to determine if devices developed for the athlete can also be applied to these

fields.

1.2 Motivation

My research pertains to investigating the use soft robotic sensors (SRS) to determine

their feasibility as a substitute for existing motion analysis technologies, which includes

restrictive, camera-based motion capture systems and inertial measurement units (IMUs)

[60]. SRS output an electrical value (capacitive or resistive) that increases with stretch.

Developing a motion analysis application using SRS could result in a solution that is more

portable, more affordable, and less invasive than lab-based motion capture systems. Further

it has potential to collect kinematic data that is more reliable than IMU data, due to the

elimination of drift.

I conducted several studies using resistive-based SRS from Liquid Wire, Inc. to de-

termine the linearity of the sensors in relation with stretch. Linearity of the sensors was

also tested under different temperatures to determine if this affected the output of the SRS.

A wooden ankle mockup was also constructed to determine the linearity of resistive SRS

output in relation to relative ankle joint angle [60]. Once the SRS output was determined to

have a strong linear relationship with stretch, another study was done collecting data from

10 participants performing four common foot movements: plantarflexion (PF), dorsiflex-

ion (DF), inversion (INV), and eversion (EVR). For this study, capactive-based SRS from

StretchSenseTM and a 12-camera ViconTM motion capture system were used to determine

ideal sensor placement and orientation for collecting foot and ankle joint kinematic data
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[89] for the aforementioned movements. Feasibility of detecting slips and trips was also

investigated using SRS to detect the PF and DF movements [13]. Finally, a gait study was

conducted with 20 participants using StretchSenseTM to determine how well SRS perform

when used to predict foot-ankle kinematics while the participant is walking on a flat and

cross sloped surface [88].

This thesis is organized as follows: Chapter 2 discusses the anatomy of the foot-

ankle complex, the gait cycle, description of SRS, motion capture, data pre-processing

approaches, and data analysis/modeling approaches. Chapter 3 discusses work accom-

plished for the linearity study. Chapter 4 discusses work accomplished for the placement

study. Chap 5 discusses work accomplished for the gait study. Chapter 6 summarizes the

conclusions and lists potential future work.

This thesis contains work from the following publications:

T. Luczak, D. Saucier, R. F. Burch V et al., “Closing the Wearable Gap: Mobile Sys-

tems for Kinematic Signal Monitoring of the Foot and Ankle,” Electronics, vol. 7, no. 7,

p. 117, Jul. 2018, doi: 10.3390/electronics7070117 [60].

D. Saucier et al., “Closing the Wearable Gap—Part II: Sensor Orientation and Place-

ment for Foot and Ankle Joint Kinematic Measurements,” Sensors (Basel), vol. 19, no. 16,

Aug. 2019, doi: 10.3390/s19163509 [89].

D. Saucier et al., “Closing the Wearable Gap—Part IV: 3D Motion Capture Cameras

Versus Soft Robotic Sensors Comparison of Gait Movement Assessment,” Electronics, vol.

8, no. 12, p. 1382, Dec. 2019, doi: 10.3390/electronics8121382 [88].
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CHAPTER 2

BACKGROUND

This chapter discusses background on anatomy of the ankle joint complex, the gait

cycle, motion capture and SRS technologies, hardware used to measure SRS, and data

pre-processing and analysis methods. I will first explain some basic concepts regarding

kinematics of the foot and ankle to provide a foundation for what I am seeking to measure

with SRS.

2.1 Foot and Ankle Kinematics

Kinematics is the study of motion without regard to the force creating said motion.

Joint angles are studied within kinematics to measure the angle between two adjacent seg-

ments along a planar movement [10]. There are three planar movements that occur at the

ankle joint complex. These include plantarflexion and dorsiflexion occurring in the sagittal

plane; abduction and adduction occurring in the transverse plane, and inversion and ever-

sion occurring in the frontal plane. Figure 2.1 illustrates these movements. Those motions

occur across two primary joints of the ankle. The subtalar joint connects the calcaneus

(heel bone) to the talus and contributes to the overall triplanar movement, but predomi-

nantly contributes to the inversion and eversion movement. The tibiotalar joint connects

the lower leg and talus and functions primarily as a ”hinge”, contributing mostly to the
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Figure 2.1: Diagram illustrating three planes of motion of the ankle joint complex from
[11]. External axial rotation corresponds to abduction and internal axial rotation corre-
sponds to adduction.
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plantarflexion and dorsiflexion movements. The three planar movements occur in com-

bination across both the subtalar and tibiotalar joints to create three-dimensional motions

called supination and pronation [73].

Pronation and supination are terms used to define the position of the plantar surface

of the foot, commonly known as the sole. Plantarflexion, inversion, and adduction occur

simultaneously during supination, causing the sole of the foot to face medially (towards

the midline of the body). On the other hand, dorsiflexion, eversion, and abduction occur

simultaneously during pronation, causing the sole of the foot to face laterally (away from

the midline of the body) [11]. The total range of motion (ROM) in the sagittal plane is

considered to be between 65◦ and 75◦, with 10◦ to 20◦ occurring in dorsiflexion, and the

remaining 40◦ to 55◦ occurring in plantarflexion [97, 35]. The total ROM in the frontal

plane is roughly 35◦ with 23◦ of inversion and 12◦ of eversion [97]. One distinction to note

is that movement in the sagittal plane becomes restricted to 30◦ when walking [73]. These

movements occur naturally during the human gait cycle. Pronation functions primarily to

absorb the shock of foot contact with the ground and stabilize the body, while supination

propels the foot off of the ground and moves the body forward for the next step. [10].

2.2 Gait Analysis and the Gait Cycle

Gait analysis is the systematic study of human locomotion. It involves the use of var-

ious technologies to collect, analyze, and assess data regarding kinematic and kinetic pa-

rameters, gait phases, and musculoskeletal functions. Various types of technologies have

been used to perform gait analysis, being standardized mainly by multi-camera motion
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capture systems. However, the motion capture approach is restricted to an isolated lab

environment, is costly, and is encumbered with a lengthy calibration process. Wearable

sensors are now being investigated to overcome these issues a provide a low-cost, portable

solution that effectively functions as a motion capture system outside a of a laboratory

setting [99].

The gait cycle of human locomotion is a periodic movement that can be broken down

into the following eight phases: initial contact (or foot strike), loading response, midstance,

terminal stance, pre-swing, initial swing, mid-swing, and terminal swing [84]. The first

five phases comprise the stance portion of the gait cycle, while the remaining three phases

comprise the swing portion. These phases can be further divide based on which legs are in

the stance or swing phase. If both legs are in the stance phase, then the body is considering

to be using bipodal or double support, whereas if one leg is in the stance phase while the

other is in the swing phase, then unipodal or single support occurs [10]. Figure 2.2 provides

an illustration for this. The gait cycle is generally considered to be the period of time from

one foot making initial contact with the ground until that same foot makes initial contact

with the ground a second time [10].

When explaining the various phases, the ”primary foot” will be referred to as the first

foot to make initial contact, thus marking the beginning of the gait cycle. The other foot

will be referred to as the ”opposite foot”. The stance phase begins with initial contact,

which occurs when the primary foot strikes the floor. This can be any part of the foot, but

the heel will commonly be the first part of the foot that makes contact with the ground [1].

Once the primary foot is flat on the ground, the loading response begins, where the primary
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foot absorbs the shock from landing, and continues until the opposite foot is lifted off the

ground for swing. Midstance takes place while the opposite foot advances past the primary

foot, and continues until the opposite foot is aligned over the primary forefoot. Terminal

stance begins when the heel of the primary foot is lifted off the grounded and continues

until the opposite foot makes contact with the ground. Pre-swing begins with the opposite

foot making contact with the ground and ends with the toe-off, or lifting, of the primary

foot [84, 99, 1, 10].

Following pre-swing, the swing phase begins with toe-off of the primary foot, swinging

forward, and continues until the primary foot is in line with the opposite foot. Mid-swing

begins when both limbs are aligned and continues until the tibia (shank) of the opposite

stance limb is vertical, while the primary foot continues to move forward. Finally the

terminal swing takes place as the swing shifts from the opposite tibia being vertical until

the second primary foot strike, or initial contact [99, 1].

2.3 Motion Capture

Three-dimensional motion capture has become the ”golden standard” research tool for

collecting kinetic and kinematic data of human motion [126]. However, It is generally

quite expensive and is restricted to an indoor laboratory setting . Using a set of infrared

cameras and a set reflective markers mounted to a subject, the system can determine the

position of certain parts of the body and can infer key information about the subject such

as joint angle data of various limb segments. Force plates can be used in addition to mo-

tion capture technology to determine ground reaction forces occurring at the left and right
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Figure 2.2: Diagram illustrating the eight phases of the gait cycle [83]

legs of the subject. For my thesis, several experiments were conducted using the motion

capture system in the Human Performance Lab (HPL) in the Center for Advanced Vehic-

ular Systems (CAVS). This system consisted of 12 ViconTM Bonita optical cameras, and

MotionMonitorTM was used to interpret the motion capture data to kinematic data. Marker

clusters were mounted to the limb segments to use for tracking participant movement. Mo-

tion capture has been used commonly in studies for validating other technologies in their

ability to accurately perform motion analysis [27, 48, 67, 104].

2.4 Soft Robotic Sensors

SRS, also known as stretch sensors, are sensors that can be used to measure deformation

such as tension or bending. The sensors are made out of material that is soft and flexible,
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and produce an output that is either resistive or capacitive that changes with deformation

of the sensor. They can be used to measure movement changes and body posture [111, 40].

Research has been conducted studying the use of soft robotics for the hands/fingers [37,

79], wrist [40], upper body [48], and legs [67, 104]. For my research, I am specifically

investigating the application of SRS in the measurement of the ankle joint complex to

determine kinematics for the sagittal and frontal planes. I have created a model where four

movements are represented by SRS. These four movements include PF, DF, INV, and EVR.

Due to the limited movement (5◦ ROM [10]) of abduction and adduction when walking, I

did note measure this plane of movement for these experiments.

2.4.1 Resistive SRS

A common type of resistive SRS seen in recent literature is created using eutectic gal-

lium indium (eGaIn), also known as ”liquid metal” [48, 67, 81]. This liquid metal is embed-

ded into an elastomer, which, when stretched, lengthens in the direction being stretched and

contracts in the transverse direction. While overall length is increasing, the cross-sectional

areas of the sensor channels decrease. Poisson’s ratio characterizes the relationship be-

tween the stretching and contraction [81, 67]. As a result, the elastomer’s channels are

proportionally deformed, causing an increase in the electrical resistance through the liquid

metal path based on the relationship described in Equation 2.1. For this equation, ∆R rep-

resents change in electrical resistance, ρ indicates electrical resistivity of the liquid metal,
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L, w, and h are length, width, and height of the channel, and ∆L, ∆w, and ∆h represent

the changes in length, width, and height.

∆R = ρ

[
L+ ∆L

(w + ∆w)(h+ ∆h)
− L

wh

]
(2.1)

Using v to represent Poisson’s ratio of the elastomer material and ε to represent strain,

∆w and ∆h can be replaced with -vεw and -vεh. Further, ε can replace ∆L/L. Equation

2.2 shows the original equation simplified with the aforementioned replacements.

∆R =
ρL

wh

{
(1 + 2v)ε− v2ε2

(1 − vε)2

}
(2.2)

Finally, since resistive SRS are constructed using an elastomer material, Poisson’s ra-

tio can be determined, setting v = 0.5, allowing us to finally simplify the expression to

Equation 2.3 [67, 81].

∆R =
ρεL(8 − ε)

wh(2 − ε)2
(2.3)

Circuit design for resistive SRS is generally simpler to implement than for capacitive

SRS. Resistor dividers and wheatstone bridges are commonly used to measure this type of

sensor since it is essentially a variable resistor. A constant current source can be supplied

to voltage dividers as well to create a more linear change in voltage when being measured

with a resistor divider [67]. Further, an analog-to-digital (ADC) converter is also utilized

to measure the voltage output in a meaningful way. Since the change is resistance for these

sensors are generally pretty small (at most an order of tens of Ohms), operational amplifiers

are often used to provide a greater range of readings from the output of the SRS [60].

Though easier to measure from a circuit-design perspective, resistive SRS tend be char-

acteristically more difficult to measure accurately. Non-linearity and hysteresis are often
12
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observed to be worse in comparison to capactive SRS [55, 67, 69]. Some of these issues

were observed in the first study using Liquid Wire sensors to determine their linearity.

Though the sensors appeared to be mostly linear in the controlled experiments. Hysteresis

was noticed the more the SRS were used (i.e. the resistance at rest was higher than when

the sensor was initially measured) and non-linearity became more apparent as more robust

experiments were performed.

2.4.2 Capacitive SRS

Capacitive SRS have found better success with achieving an electrical output that is

both highly linear and nonhysteretic. A study from NASA investigated the use of six dif-

ferent types of stretchable sensors, and while some of the resistive-based sensors produced

modest results, the capacitive sensor from StretchSense surpassed the other sensors by a

significant margin. For example, the creep test lasted on the order of tens of hours for the

StretchSense SRS before slight hysteresis was observed, whereas the other sensors were

only stretched for minutes or even seconds before hysteresis occurred [55].

The most prevalent type of capacitive SRS in recent years is the dielectric elastomer

sensor (DES). This usually consists of a combination of an elastomer dielectric and elas-

tomer electrode layer depending on how the sensors are manufactured. Most work involves

using silicone as the elastomer layer [40, 104].

Though capacitive SRS provide a more consistent output than resistive SRS, they are

much more difficult to accurately measure. The DES can be characterized as an electrical

circuit with a variable capacitor in series with a variable resistor, which all change as

13
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deformation of the DES occurs. Capacitance is better to measure due to its high sensitivity

to the change in area of the electrodes, whereas the resistance of a DES is easily influenced

by temperature and electrode quality [75]. The capacitance can be characterized with

Equation 2.4, where ε0 is the dielectric’s vacuum or permittivity of free space, εr is the

dieletric’s relative permittivity, A is the area of the overlapping electrodes, and d is the

thickness of the dielectric layer [40, 47, 117]. The drawback to measuring capacitance from

a DES is that significant electrode resistance causes the meter to incorrectly measure the

capacitance [30]. In some cases the capacitance isn’t even measured, and instead voltage

is measured to at least get a metric that changes with sensor deformation without diving

into complex capacitance sensing methods [40].

C =
εrε0A

d
(2.4)

For the purpose of this research, I will not be diving much further in the methodology

for measuring capacitive SRS as extensive research has already been done, and an off-

the-shelf microcontroller is being used for my experiments to measure capacitive SRS.

StretchSense has addressed this as being a difficult problem to solve and advocates for

using their measurement unit, which has been optimized over time to mitigate the nuances

of measuring the capacitance of a DES [98].

2.5 Data Preprocessing

In order to collect data from both motion capture and SRS and perform analysis using

the two measurements methods, several preprocessing techniques are required, which are

detailed below.
14
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2.5.1 Data Interpolation

For measuring capacitive SRS, a proprietary Bluetooth-enabled Serial Peripheral Inter-

face (SPI) sensing module from StretchSenseTM was used to collect data from the sensors.

A companion smartphone application was used with the module to save the data collected

over a given period of time. Due to limitations in the Bluetooth implementation, the max

sampling rate that could be collected from the module was roughly 25 Hz, despite the SPI

sensing module being able to measure up to 1000 Hz. Further, the samples were not col-

lected at evenly spaced time intervals. The motion capture data was collected at either 100

Hz or 200 Hz. In order to resolve the difference in sampling methods and the inconsistent

sampling of the SRS, an approximation method was used to upsample and interpolate the

data collected by the SRS to match that of the motion capture system.

Linear interpolation of the SRS data involves curve fitting using linear polynomials to

infer new data points inside a range of discrete values defined in a sequence of data. Given

two known data points (x0, y0) and (x1, y1), a linear interpolant is determined as a straight

line drawn between these points. For a given value x to be interpolated between the interval

(x0, x1), y can be determined with Equation 2.5. Solving for y results in Equation 2.6. A

complete linear interpolation of a dataset is the result of the concatenation of the linear

interpolants determined between each pair of data points. While this approach enables the

comparison of the two datasets, it does introduce some error due to the polynomial nature

of the output that occurs, based on Rolle’s theorem [95, 110].

y − y0
x− x0

=
y1 − y0
x1 − x0

(2.5)
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y =
y0(x1 − x) + y1(x− x0)

x1 − x0
(2.6)

2.5.2 Cross-correlation

Once the difference in sampling rates are reconciled, there is usually still a time delay

that exists, as the devices did not always begin recording at the same time with two humans

synchronizing the start of a trial. Cross correlation is a method that can solve this issue,

where one dataset is essentially ”slid” over the other to determine the optimal point at

which the two datasets match. Equation 2.7 defines this function, where f and g represent

continuous functions (in our case, SRS and motion capture), f [m] denotes the complex

conjugate of f(t), and τ represents displacement or lag [87, 109].

(f ∗ g)(τ) ,
∞∑

m=∞

f [m]g[m+ n] (2.7)

The maximum value of the cross-correlation function can be used to determine the

point in time where two sequences are best aligned. Equation 2.8 describes collecting

the arg max of the cross-correlation function to find the time delay between two datasets

[87, 109]. Note that for this expression, ∗ represents correlation, rather than convolution.

τdelay = arg max
tεR

((f ∗ g)(t)) (2.8)

One dataset is shifted to match the other based on the location of the maximum value,

and any excess data points are trimmed. For example, if motion capture began recording

before SRS, then values at the beginning of the motion capture would be removed based

on the delay calculated. Following this, if one measurement stopped recording after the

other one did, then those additional values are removed as well.
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In the case of matching SRS data to motion capture data, the two datasets are aligned

based on the SRS that best captures the motion being measured. When performing isolated

movements in the sagittal plane, the PF and DF SRS are used for cross-correlation, while

isolated movements performed in the frontal plane are aligned with the INV and EVR SRS.

Prior to performing cross-correlation, when PF and EVR are being evaluated, their datasets

are inverted due to their stretch correlating to an inverse movement of the planar movement.

In other words, the PF and EVR SRS are positioned to measure joint angle values in the

negative plane for the sagittal and frontal movements, respectively. If triplanar movement

such as supination or pronation is occuring, then PF and DF are used for cross-correlation,

as the positioning of the INV and EVR SRS are coupled to both planes of movements and

therefore sensitive to both planes of movement.

2.5.3 Filtering

Filtering methods were used to mitigate noise in the motion capture data and aliasing in

the SRS data. For the motion capture data, a 15 Hz low-pass Butterworth filter was used to

smooth the data. This particular filter was chosen due to its ability to flatten the frequency

response in the passband as much as possible [108].

One issue that came about with the approximation of the SRS data was that some

samples were aliased due to the low sampling of the StretchSense Bluetooth module. In

other words, certain data points were sometimes interpolated between values that were

the same, therefore interpolating the new data point to the same value. This resulted in

SRS data that possessed a ”stair-step” appearance when plotted and revealed an issue that
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impacted the accuracy of its ability to predict kinematic data. However, when filtering

this data, it was important to preserve the peak responses that occurred in the SRS data.

The Savitzky-Golay filter was chosen to smooth this data as it is particularly effective at

preserving minimum and maximum values [4].

2.6 Data Analysis

Once the data was pre-processed, analysis of the data was performed to evaluate how

effective the SRS were at modeling foot and ankle kinematic data. Several metrics were

used to determine the linearity and accuracy of the model including R-Squared (R2) values,

Root Mean Squared Error (RMSE) values, and Mean Absolute Error (MAE) values.

2.6.1 Linear Modeling

In order to use SRS data to predict motion capture data, a linear model should be

developed to capture the relationship between the two datasets. For my implementation this

is done using an ordinary least squares fitting method, which finds the best fitting line that

minimizes the sum of the squared residuals. An example of such a model can be observed

in Equation 2.9 where Yi is the estimate of the i’th sample from the motion capture data,

xi is the i’th sample from the SRS, and β is the coefficient of the SRS. In this case only

a single sensor is used to predict kinematic data from one plane of motion recorded from

the motion capture system. Prior to modeling, the PF and EVR SRS output is inverted to

create a positive relationship between the SRS and the motion capture system. Movement

in the sagittal plane is predicted with models generated from the PF and DF SRS, while
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movement in the frontal plane is predicted with models generated from the INV and EVR

SRS.

Yi = α + βxi (2.9)

2.6.2 Multivariable Linear Modeling

When triplanar movement occurs, linear modeling must be performed while factoring

in output from all SRS in order to get an accurate position, due to the coupling of the

planar movements to the same SRS. In order to generate this model, the same principle

is applied as done for the single linear model, except that multiple predictor variables are

used in the model, each having their own coefficient. This can be observed in Equation

2.10. The difference is that x(1)i now represents the i’th sample from the j’th SRS and βj

is the coefficient of the j’th SRS.

Yi = α + β1x
(1)
i + β2x

(2)
i + β3x

(3)
i + β4x

(4)
i (2.10)
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CHAPTER 3

LINEARITY

This chapter is based on publication [60].

3.1 Introduction

While improving athletic performance is a common goal of Strength and Condition-

ing (S&C) coaches across all levels of competition, the question of optimization of per-

formance is still subject to trial and error. Quantifying training protocols is one method

to evaluate and validate performance programs. Traditionally, optical motion capture of

biomechanical data collection is considered the gold standard for identifying kinematic and

kinetic parameters [27] and is generally confined to a research laboratory or lab-like envi-

ronment due to the equipment requirements. Unfortunately, high costs and limited access

to these research environments reduces the opportunity for improving all athletes through

technical analysis [66]. One promising technological advancement that has seen increased

exposure in research and competition is wearable sensor technology and the opportunity to

measure near real-time kinematics on the playing field [12]. Measuring various physiolog-

ical and kinematic parameters is now accessible to the average athlete compared to the hu-

man activity recognition devices from twenty years ago [52, 26]. Numerous commercially
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available products utilize micro electromechanical systems [22] (MEMS), accelerometers,

and gyroscopes to capture biomechanical measures outside the lab [27].

One of the benefits of using MEMS devices is that they offer a lower-cost alternative

to traditional motion capture solutions. Using an inertial frame, the relative orientation of

limb segments can be calculated from accelerometer and gyroscope data [17]. One com-

monly used type of MEMS is the inertial measurement unit, or IMU, and it is found in

most technologies where some form of movement information is captured. However, sev-

eral recurring issues are seen in IMU-based motion capture systems including distortion

and drift [27], and challenges in how to consistently manage calibration [24]. The distor-

tion and drift that affects actual sensor horizontal and vertical data are due to distortions

in non-homogeneous magnetic fields, often caused by building construction materials and

magnetic interference [27, 76]. To reduce noise, improved anatomical models and static

calibration in defined positions have been developed [27, 17]. However, measurement er-

rors still occur due to skin and segment speed of movement and axial segment rotation [57].

According to Kavanagh et al. [46], the separation of limb segment resultant acceleration

could not be identified within the sensor data, resulting in the difficulty to obtain accurate

measurements. Additionally, external devices are often incompatible with activities that

involve contact and may require frequent adjustment and re-calibration [61] making them

impractical for use in real-world environments.

In human movement, the neuromuscular system senses strains, positioning, and stretch-

ing of its proprioceptors and muscular system in order to coordinate limb segment move-

ment [18]. A body network sensor system that mimics strain and stretch around the joints
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may offer an alternative to using stiff, circuit board-based IMUs in capturing human limb

movement. Given calibration and consistency challenges that exist with IMUs used in the

athletic wearable market today, a potential solution may lie in the use of a different kind

of sensor, or sensors developed for a different purpose, such as SRS. Totaro et al. custom

designed soft sensors and integrated them into garments for precise movement validated in

lower limb joints [104] but this research did not utilize “off-the-shelf” sensors and there-

fore are limited for future, real-world environment use cases. Other recent studies utilized

more commercialized soft robot sensor solutions found in exoskeletons technologies for

less complex movements not located around the foot and ankle [40, 77]. For the purposes

of this study, SRS can be identified as silicone–textile (or other soft materials) layered with

liquid conductive material and generally identified as resistive or capacitive [3, 58]. As

these sensors are stretched, their resistive or capacitive values increase. At the beginning

of this research, there were two primary SRS solutions available to test. Liquid Wire is

a resistance-based sensor and StretchSenseTM is a capacitive-based sensor, both of which

provide increased output values when stretched past their initial resting lengths. Several

advantages for using SRS such as these include (a) the ability to measure biomechanical

strain without worry for occlusion errors that typically occur in optical systems and elim-

inate drift that can occur in MEMS sensors [66]; (b) the realization of small changes in

electromechanical specifications during loading and unloading; and (c) the reduction of

interference as observed by the wearer [67]. In addition, SRS inherently offer “stretcha-

bility”, which allows the sensors to cover arbitrarily shaped joints that occur on the human

body [118].
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The purpose of the research described herein is to take a new type of sensor, SRS, and

determine if this solution can be re-purposed for motion capture via a customized wearable

technology application. The motivation behind this idea being to mitigate or completely

remove the problems described regarding IMU-based wearable solutions. Before any solu-

tion design and prototyping based around this sensor solution was initiated, the researchers

identified critical questions that needed to be addressed by subject matter experts (SMEs):

(a) There are known issues with data consistency and reliability with wearable technology

(as previously defined) but what do actual SMEs of the technology think? (b) What are the

gaps that SMEs identify as being the biggest opportunities for wearables?

3.1.1 Interviews—Two Concerns

In order to address the first question regarding wearable industry gaps, this research

team sought out SMEs who were not only familiar with the intended (and actual) use of

the technology but who were also knowledgeable of the “state of the art” of the wearable

market. As a result of securing regional NSF I-Corporation (I–Corp) grant funding, the re-

searchers conducted a series of nearly three-dozen, hour-long interviews with S&C coaches

and athletic trainers (AT) from around the country in all sports at the collegiate and pro-

fessional levels for both men and women competition. These interviews were conducted

to establish the need and use of wearable technology to improve athletic performance and

manage athletic activity. The primary questions posed to the interviews were (a) “What are

the gaps in the current generation of wearable technologies available to you today?” and

(b) “If you could design a wearable solution, what information would it capture for you in
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order to assist in making critical decisions about health and safety?” Two primary concerns

were repeated by the interviewees. The first concern was that current data from wearable

sensors could not be trusted due to consistent inaccuracies and lack of transparency with

generalized correlations. The second most consistently identified gap was that data cap-

tured “from the ground up” was desired but was either missing or delivered improperly in

current wearable technological solutions designed for athletic competition and movement

evaluation. The term ”from the ground up” highlights a desire on the part of the S&C

coaches and ATs to have data collected at the point where the athlete comes in contact with

the ground, the foot and ankle.

3.1.1.1 Rebuilding Trust

The first gap identified through the I–Corp interviews, the issue of trust, is a major con-

cern as these S&C coaches and ATs are responsible for making decisions about the health

and safety of athletes. Training and rehabilitation protocols directly influence athletes’

functional health beyond competition. Backing the concerns identified by the interviewees,

multiple researchers have expressed concerns about the efficacy of sensors in rehabilitation

use due to inaccuracies [5, 9], and the inability of users to successfully manage the number

of false positives that can occur through wearable sensor use often results in poor compli-

ance [5]. To overcome inaccuracies found in wearable technology, researchers have used

a variety of different and frequent calibration procedure methods [53], extra sensors, and

substituted ultra-wide band for magnetometers [24]. As seen in a study of three commer-

cially available Attitude and Heading Reference Systems (AHRS) [53], relative accuracy,
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which can be related to human joint angle measurement, deviated from one degree in a 30

s time segment to over 16 degrees in repeated two minute dynamic segments compared to

the gold standard of optical motion capture. Resetting of the reference points for the sen-

sors during the trials did improve accuracy; however, constant re-calibration can occur in

the lab and be tolerated but this frequent level of adjustment is neither practical nor accept-

able for practitioners who would need to stop training or practice to re-calibrate wearable

devices.

From the corroborated output amassed during the I–Corp interviews, the number of

step counts by Mississippi State University (MSU) men’s and women’s basketball teams

captured during the 2016–2017 season recorded higher than normal step activity during

practices. Further investigation into the data revealed that the dribbling motion of the bas-

ketball by the player’s arms and hands were being counted as steps and work performed.

Other inaccuracies also occurred with the MSU football team. During a spring training

practice in 2017, one player registered as taking a few hundred steps and traveling 10

miles, which is obviously not physically possible. At most, average football players in an

average practice will travel between one and two miles depending on the position played,

but not 10 miles. Additional evidence of inaccuracies has led S&C coaches at universi-

ties of similar sizes and athletic budgets as MSU to completely stop using any type of

wearable technology. These peer institutions are recommending that other university ath-

letic programs do the same and terminate wearable use for health and safety assessments

associated with practice and training events.
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3.1.1.2 From the Ground Up

The second piece of valuable information gained from the S&C coaches and AT in-

terviews regarding wearable gaps revealed the need for information to be captured “from

the ground up”. According to responses from the I–Corp interviewees, current wearable

technology does not provide accurate ground reaction force and ankle complex movement

data. Determining ankle complex movement (especially in near real–ime to aid in health

and safety-based decision making) has many benefits to both the athletic and rehabilitation

industries, as the foot and ankle mobility influence total human movement [42]. Repeated

lateral movement or excessive movement beyond normal range of motion of INV can lead

to ankle sprains [38]. In addition, high and repeated forces occurring at the foot and ankle

can be used to infer what happens at the knee and hip, which can lead to early fatigue

and negatively alter postural control, resulting in biomechanical compensations that may

cause injury [34]. A review of currently available wearable solutions further accentuates

this ankle data gap. While a few solutions capture some information at the foot and ankle

level, none of them capture absolute joint angles—meaning, no solution can give exact

ankle movement values. In fact, few, if any, wearable solutions provide more than in-

ferred joint angle data (ankle or otherwise) because angles are assumed based on limb

segments. Devices proven to be inaccurate due to drift and other inconsistencies are also

using inferences to make assumptions about generalized joint movements. The intervie-

wees’ concerns about both trust and a lack of data captured “from the ground up” come

full circle based on information shown in Table 3.1. Thus, the need to develop wearable

technology differently is clear and further emphasizes the need to utilize a technology ca-
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pable of consistently capturing the strains and stressors at the ankle complex in order to

provide data that may not be visually noticed by the S&C coaches.

Table 3.1 is an analysis of many of the movement-calculating wearable solutions avail-

able identified in the I-Corps interviews by S&C coaches as either having been used in the

past, in use today by their institution or, at a minimum, of interest for potential consid-

eration. Since many of these wearable technologies are new solutions and have not been

validated in literature, much of the information had to be extracted from manufacturer

websites as well as news and sports-related articles. In some cases, true capability and

functionality were not clear; therefore, the authors had to default to promotional material

claims and intellectual property definitions via patents. Much of the information about

the devices’ true functionality and data capturing granularity is vague at best, which is

one of the reasons highlighted in the interviews for why a lack of trust among the users

of the technology exists. While compiling Table 3.1 further emphasized the lack of trust

gap, the completed version of the table also highlights the second gap, a lack of absolute

measurements for any joint, including the ankle complex.

3.1.2 Dynamic Range of Motion and Sensor Placement

Due to the intricacy of the ankle complex, precise placement of sensors are required to

obtain accurate kinematic data during movement. Ankle complex rotational components

can be found within the talocrural, subtalar, and inferior tibofibular joints [38]. Given the

anatomical design of the ankle joints, movement of the foot during open kinetic chain in PF

and DF do not occur in a single sagittal plane [116]. During PF, the foot moves 28 degrees
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Table 3.1: Wearable solution capability comparison. R = RFID Tags. T = Total Distance.
Z = Z-axis only. A = Average Value. DP = Developmental Platform. H = Hydrocell
Technology. CF = Conductive Fibers. GPS = Global Positioning System.
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Catapult [63, 29, 105] IMU × × × × × × × ×
Zephyr [123, 44, 49, 36] IMU × × × × ×
IMeasureU [82] IMU × × × × × × × × ×
Zebra [120, 119, 101, 16] RFID T × R
[86, 103, 122] RFID T × R
STATSport [96, 121] IMU × × × × × × ×
ADPM [6] IMU × × × × × × × × ×
TekScan[85] Insole × × × × ×
Shimmer Sense [2] DP × × × × × × × ×
zFlo-Motion [71] Insole × × Z × × × ×
Novel Pedar [41] Insole & DP × × × × ×
DorsaVi [14] IMU × × A × × × ×
BioStamp [65] IMU & R&D × × × × × ×
Heddoko [21] IMU Garment × × × × × × ×
GaitUP [91] IMU × × × × × × ×
Motus [106] IMU × × × × × ×
Notch [74] IMU & DP × × × × ×
Noitom [56] IMU & DP × × × ×
Xsens[125] IMU × × × × × × × × ×
G-Vert [62] IMU × × × × × × ×
LegSys [72] IMU × × × × × ×
paroTec [15] Insole × × × × × H
Sensoria [23, 68] CF × × × × × ×
[94, 64] CF × × × × × ×
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in the sagittal plane, one degree in the transverse plane, and four degrees in the frontal

plane [38]. Likewise during DF, there are 23 degrees of movement in the sagittal plane,

nine degrees in the transverse plane, and two degrees in the frontal plane [38]. Unlike

previous research on comparisons of IMUs for optimal motion capture which both ignore

internal and external rotations and INV and EVR [92], this study looks at the viability in

using SRS to capture all movement in all three planes.

An important aspect of this investigation is the consideration for placement of these

sensors in order to optimize measurements of complex ankle movements. Previous work

by Mengüç et al. [66] has evaluated the sensor placement at the posterior part of the ankle

and heel, extending from the distal aspect of the gastrocnemius muscle complex down to

the calcaneous, which has shown positive results in sagittal plane movements (coefficient

of determination 0.9680). To capture tri-planar ankle joint movement, one sensor was

placed parallel to the distal 1/3 aspect of the fibula, overlaying the lateral malleolus to

capture INV and EVR. Second, vertically in–line with the distal 1/3 aspect of the tibia

onto the superior aspect of the talus and a third sensor was positioned perpendicular to

the 23 degree axis of INV [38]. This research provides a starting point for where sensors

should be placed in order to effectively capture full range of ankle motion.

With a clear goal identified (capture data “from the ground up”) and a potential replace-

ment IMU sensor direction found, the aim of this study is to evaluate the use of resistive

SRS at the ankle complex movement level. Determining ankle complex movement in near

real-time has many benefits to both the athletic and rehabilitation industries, as the foot and

ankle mobility influence total human movement [42]. As repeated lateral movement or ex-
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cessive movement beyond normal range of motion of INV can lead to ankle sprains [38],

applying resistive SRS at the ankle joint complex may provide information to coaches,

trainers, and therapists in preventing over-use injuries and validate proper ankle rehabili-

tation training exercises. The goal of this paper is to show that SRS have the potential to

usher in a new type of wearable that is not limited by the difficult challenges created by

IMUs such as drift. Liquid Wire sensors were selected for this study given their resistive

properties, the researcher’s access to different substrate types, and the ability to custom or-

der sensors with specific resting resistances and lengths. Based on the goals and limitations

above, the contributions of this paper are as follows:

• Liquid metal sensors (specifically those manufactured by Liquid Wire [54]), which
are designed for soft-robotics applications, are experimentally shown to be suitable
for capturing ankle complex movements for DF, PF, INV, and EVR.

• A simple microprocessor-based computing unit prototype designed to accurately
measure the Liquid Wire sensors resistances is provided.

• Liquid Wire sensors, which vary their resistance under stretching, are experimentally
shown to provide a linear relationship versus stretching distance and temperature.

• Linear regression models were used to relate the resistance measurements into ankle
angle measurements.

• A detailed summary of the state-of-the-art in wearable solutions is provided which
shows that there currently is not another wearable solution capable of making ankle
measurements (Table 3.1).

The remainder of this paper is organized as follows. Section 3.2 provides informa-

tion on experimental materials and methods. Section 3.3 discusses experimental results.

Section 3.4 draws conclusions and lists the researchers’ future work pursuits.
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3.2 Materials and Methods

This section discusses materials and methods for (a) testing the Liquid Wire sensors;

(b) testing the dynamic range of motion; and (c) estimating angles from the Liquid Wire

sensors. Results and conclusions from these tests are discussed in Sections 3.3 and 3.4,

respectively.

3.2.1 Liquid Wire Testing

In order to prove that the Liquid Wire sensors are a viable tracking solution, the researchers

conducted several experiments to verify that the sensor output changed linearly with stretched

length, regardless of temperature, and that the sensor could be feasibly utilized in a microcontroller-

based system.

3.2.1.1 Testing Goals

The goals of the Liquid Wire testing were to (a) validate that the Liquid Wire sensor is

linear in resistance versus stretched length; (b) validate that the Liquid Wire sensor is linear

in resistance versus stretched length at various temperatures; and to (c) validate that the

Liquid Wire sensor’s resistance could be accurately measured in a microprocessor-based

solution.

3.2.1.2 Equipment

Test equipment is shown in Table 3.2. Table 3.3 lists the bill-of-materials for the com-

puting unit.
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Table 3.2: Test Equipment for Liquid Wire Testing.

Component/Purpose Manufacturer Model
Clamps—hold test article Irwin Quick-Grip 3′′ clamps
Drill Press—stretch test article Irwin 4′′ Drill Press Vise
Micro-Ohm meter—validate computing unit Agilent/Keysight 34420A
Digital multimeter—validate computing unit Fluke 179
Liquid Wire sensors—test articles Liquid Wire Various
Hand-held temperature sensor—monitor test article temperature Etekcity 1080
Ankle complex model—test sensor linearity Custom Ankle test fixture
Blow dryer—heat test article Conair 146RX
Digital Caliper—measure test article stretch Tritan 0344621
DC Benchtop Power Supply—power circuit for testing Extech 382213

Table 3.3: Equipment bill of materials for the prototype computing unit.

Manufacturer Model Description
Arduino Uno R3 Microprocessor
RexQuails RQ-RK-001 Resistors
CTYRZCH 4330118083 16 Bit I2C ADS1115 4-channel

Analog–to–Digital Converter Module
Jameco ValuePro 20812 Solderless Breadboard
Elenco JW–350 Pre–formed Jumper Wire Kit
Elegoo EL–CP–004 Breadboard wire set for Arduino
Cable Matters 200001–BLK–10x3 USB 2.0 A–to–B Printer Cable, 10 feet
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3.2.1.3 Test Procedure

An apparatus was constructed to take measurements from the Liquid Wire sensors at

various stretched lengths. In order to stretch the sensor in a stable and consistent manner,

an IRWIN four-inch drill press vise was mounted on top of a table. Two IRWIN QUICK–

GRIP three-inch clamps held down each end of the Liquid Wire sensor to an end of the

vise. Care was taken to not over–tighten the clamps so as to not damage the test article. A

digital caliper was used to measure the length of the segment of sensor being stretched. A

screw located on one side of the vise was used for adjusting one side of the vise and was

used to consistently stretch the Liquid Wire sensor. Figure 3.1 shows the test fixture in the

Sensor Analysis and Intelligence Laboratory (SAIL) facility. The Liquid Wire sensor is

the dark band highlighted near the bottom of the figure. The caliper measuring the sensor

length is also highlighted. By turning the vice screw, the sensor length can be carefully

adjusted.

Linearity Testing For the first experiment, two benchmark methods for measuring resis-

tance were used to determine if there is a linear relationship between resistance and stretch

length. The methods used were: (a) a Micro-Ohm Meter, which is the lab standard in

measuring resistance; and (b) a Wheatstone bridge circuit, which is a very accurate and

common circuit used for measuring resistance. These two methods were evaluated and

compared against each other to decide which one would be used for the remaining exper-

iments. For the first method, an Agilent Micro-Ohm Meter was connected directly to the

Liquid Wire sensor to measure its resistance. The Liquid Wire sensor was mounted on the
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Figure 3.1: Picture of Liquid Wire test fixture. Liquid Wire sensor and digital caliper
highlighted.

testing apparatus, and the screw was turned in 180◦ intervals. At each interval, the resis-

tance and length of the sensor was measured. This was done until the sensor was stretched

to approximately 20 mm longer than its original length.

The same process was then repeated for the Wheatstone bridge circuit. For this method,

three 10 Ω resistors were soldered together. Care was taken to identify these resistors asR1,

R2, and R3, similar to the schematic shown in Figure 3.2. The Micro-Ohm meter was used

to record precise measurements of the three resistors to be used in calculations. Alligator

clamps were used to connect the Liquid Wire sensor toR2 andR3. A power supply (Vsupply)

was connected and set to 0.5 V to reduce current draw through the resistors. The positive

end was connected to the node between R1 and R3, and the negative end was connected

to the node between R2 and the Liquid Wire sensor. A multimeter was then connected at
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the node between R1 and R2 and the node between R3 and the Liquid Wire sensor, and

these nodes are labeled as V12 and V34 in Figure 3.2, respectively. A voltage measurement

Vmeasured was taken from the multimeter to determine the difference between these two

nodes. These values were used to determine the resistance with Equations 3.1 and 3.2,

where all resistances have units of Ohms. The complete derivation for these equations can

be found in Appendix A.1.

α =
Vmeasured
Vsupply

+
R2

R1 +R2

(3.1)

RLiquidWire =
R3 ∗ α
1 − α

(3.2)

Figure 3.2: Schematic diagram of Wheatstone bridge circuit. Resistances are in Ω.

The benefits of using the Micro-Ohm Meter is its level of precision and the ease of

setup as circuit construction was not required to get sensor measurements. Moreover, mea-

surements from this very accurate device were used to validate the prototype computing
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unit’s measurements. However, this method was not without issue. Due to the way the de-

vice calculated the sensor’s resistance, there was inherent drift in the measurements. Also,

the resistance was updated about once a second, therefore, measuring with this method

would not work in a real-time application. The change in resistance was still linear, but it

was difficult to get a consistent measurement, since the Micro-Ohm Meter would slightly

change the value displayed soon after stretching the sensor. While the multimeter output

for the Wheatstone bridge circuit did not provide the same level of precision as the Micro-

Ohm Meter, it still provided a more consistent reading for the researcher to record. This

was important for consistently collecting data in the remaining experiments.

Results for both of these methods are discussed in Section 3.3.1.1. Based on the is-

sues described related to taking measurements with the Micro-Ohm Meter, the Wheatstone

bridge circuit was selected as the method of measurement to be used for the remaining ex-

periments described in this section as well as the static model testing described in Section

3.2.2. During this experiment, the researchers noted that the connections to the sensor

leads were getting damaged. After consulting with Liquid Wire, the company stated that a

sensor would not work reliably and could potentially be damaged if stretched 20% beyond

the sensor’s original length.

Lastly, a constant current voltage divider circuit was constructed to take measurements.

This simply involved a 10 Ω resistor that was placed in series with a Liquid Wire sensor.

By supplying a constant current of 0.1 amps and measuring the voltage across the Liquid

Wire sensor with a multimeter, Ohm’s Law can be applied to determine the resistance.
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Vmeasured is defined as the voltage measured from the multimeter. Isupply is defined as the

current being driven from the power supply. The schematic is shown in Figure 3.3.

RLiquidWire =
Vmeasured
Isupply

(3.3)

Figure 3.3: Schematic diagram of constant current voltage divider circuit.

Temperature Testing In order to verify that the Liquid Wire sensor output remained

linear against stretched length regardless of temperature, the same testing apparatus was

arranged as described in Section 3.2.1.3 using the Wheatstone bridge circuit. Two types

of Liquid Wire sensors were used, each with a different substrate: one with a TPU (ther-

moplastic polyurethane) coated proprietary liquid metal, and one with a silicone covering.

The different types were chosen for this particular experiment to evaluate whether or not

substrate had an effect on resistance at different temperatures. Data was collected for four

different stretched lengths of the sensor. This data was first collected with the sensor at
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room temperature. Afterwards, a heat gun was used to heat the sensor up to 80◦F. A hand-

held temperature sensor was used to monitor sensor temperature and make sure that it was

maintained at the same temperature. Data was then collected, and the temperature was

verified and corrected at each stretched length. This process was completed one last time

at 98◦F, to simulate the surface temperature of the human body’s skin. Results from this

experiment are discussed in Section 3.3.1.2.

Microprocessor Testing A microprocessor-based prototype, also known as the comput-

ing unit, was constructed to validate the potential for the sensor data to be collected in

real-time. This prototype was designed to take measurements from the various types of

sensors that were supplied by Liquid Wire, which would also be used for future research

experiments (See Future Work in Section 3.4.2). Table 3.4 provides several examples of

sensors that were tested, which are also pictured in Figure 3.4. The researchers first de-

signed the prototype using an Arduino Uno R3, an ADS1115 16–bit Analog–to–Digital

Converter (ADC) Module, and the previously described Wheatstone bridge circuit. The

ADC module was able to pick up small changes in voltage due to its high precision voltage

reading, which was useful for increasing sensitivity to changes in stretched length of the

Liquid Wire sensor. This module was able to collect even more precise data through the

use of its built–in programmable gain amplifier (PGA), which could amplify small signals

to provide even more sensitivity to sensor output changes. It essentially replaced the mul-

timeter used in the previous experiments, as it took the difference in voltage measurements

between nodes V34 and V12 and transmitted a corresponding analog value to the micropro-
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cessor over I2C. The Wheatstone bridge circuit and ADC module were powered by the

3.3 V source from the Arduino Uno. Due to the higher voltage supply, the 10 Ω resistors

were replaced with 100 Ω resistors to reduce current flow through the circuit. An extra 100

Ω resistor was placed in series with the leg of the Liquid Wire sensor to keep the bridge

closer to being balanced. The microprocessor communicated with a laptop over a serial

connection and provided output that indicated the current resistance of the Liquid Wire

sensor.

Table 3.4: Liquid Wire Testing Article Specifications.

ID Substrate Length (mm) Resting Resistance (Ω)
A Thermoplastic Polyurethane 202 30.0
B Thermoplastic Polyurethane 209 44.1
C Silicone 165 6.0
D Thermoplastic Polyurethane 107 13.6

While testing the prototype with different sensors, the researchers encountered an is-

sue with reaching a peak amplified voltage due to the differences in resting resistances

(resistance measured without stretching) between the Liquid Wire sensors. These resting

resistances ranged from roughly 5 Ω to 45 Ω. To prevent this issue, either the gain of the

amplifier had to be reduced or the values of the resistors in the Wheatstone bridge had to

be increased. Furthermore, this would come at the expense of losing levels of voltage mea-
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surements, also known as bins. In practical terms, when correlating sensor readings to joint

angles, the prototype would lose precision when estimating angles in future experiments if

the circuit was not physically changed. Due to this issue, the researchers investigated re-

placing the Wheatstone bridge circuit with a voltage divider circuit, which was determined

to be a simpler and more flexible method for measuring sensors of varying resistance. An

added benefit to the voltage divider circuit was that four sensors could be measured at the

same time instead of two, since the ADC module would only need to measure the voltage

measured at one node V1 in Figure 3.5.

The data shown in Figure 3.6 taken from Personal Simulation Program with Integrated

Circuit Emphasis (pSPICE) provides further justification for this design choice. The sim-

ulation performed shows the range of bins that correlate to the given range of resistances

that was stated previously. The simulated Wheatstone bridge circuit used 100 Ω resistors

at each leg with a variable resistor in series with one of the legs to emulate the Liquid

Wire sensor. An instrumentation amplifier was connected to nodes V34 and V12 to emulate

the PGA functionality of the ADC module taking a differential measurement. The sim-

ulated voltage divider circuit used a 150 Ω resistor in series with a variable resistor. A

non-inverting operational amplifier was connected at node V1 between the 150 Ω resistor

and the variable resistor to emulate the PGA functionality of the ADC module taking a

single-ended measurement. In simulation, the gain was set to 4 volts per volt (V/V) for

both circuits. At a range of 5 Ω to 40 Ω for the variable resistor, the voltage divider cir-

cuit provided 74,421 bins for measurements, while the Wheatstone bridge circuit provided

57,856 bins. When factoring in that the Wheatstone bridge loses linearity in measuring
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voltage around 32 Ω, the realistic amount of resolution provided is closer to 50,390 bins.

The fact that the circuit provides less resolution and still fails to take reliable measurements

after a certain threshold indicates that the voltage divider circuit is the better choice for the

prototype. A picture of the computing unit and a block diagram describing the design are

shown in Figure 3.4. The design change for the computing unit’s circuit design is depicted

in Figure 3.5.

Figure 3.4: Microprocessor prototype. (a) Computing Unit block diagram; (b) Computing
unit with various Liquid Wire sensors connected.

After re-designing the prototype, the voltage divider circuit replaced the Wheatstone

bridge circuit to validate the accuracy of the computing unit. The same test procedure

described in Section 3.2.1.3 that was used for validating linearity of the Liquid Wire sensor

was conducted using the computing unit as a method of measurement. The data collected
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Figure 3.5: Computing unit circuit design change from Wheatstone bridge to voltage di-
vider.

Figure 3.6: Comparison of range of voltage levels (bins) that can be used for taking mea-
surements at various sensor values. Note that sensitivity of change decreases for the Wheat-
stone bridge at about 32 Ω. (a) Wheatstone bridge measurement range; (b) Voltage divider
measurement range.
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from the computing unit was compared to data collected with the Micro-Ohm meter to

validate accuracy. Results are discussed in Section 3.3.1.3.

3.2.2 Static Model Testing

The human ankle complex is comprised of three joints: the talocrural joint, the subtalar

joint, and the distal tibiofibular joint, which is a syndesmosis joint [38]. This allows the

foot and ankle to move in multiple planes of motion as needed for walking, running, and

athletic movements. Modeling of the ankle complex has provided basic descriptions of

foot movement in PF, a downward movement of the foot; DF, an upward movement of the

foot; EVR, an outward movement of the bottom of the foot; and INV, an inward movement

of the bottom of the foot. Using these four measures of ankle complex movement has been

shown to be effective in studying the differences in passive and active joint movement [42].

To understand the sensor output’s relationship to the ankle joint movement, a model of

the human ankle was constructed of 2′′ × 4′′ pine and 3/8′′ rubber flooring material securely

screwed into the wood, allowing for angular rotation in the sagittal and frontal planes as

derived from a previous model used in the literature [28]. The sensor was then attached

to the model using toupee double sided tape and reinforced with an overlapping elastic

band to secure and create two anchor points. Upon attachment, the sensor was stretched

slightly. To measure the degrees of PF and rotation, two smartphones were calibrated using

a carpenter’s bubble level running the RIDGID Level iOS application. The smartphones

were securely attached to the model via elastic bands and phone mount. An electronic go-

niometer was used to validate the measurements from the smartphone. Using smartphones
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allowed for validation of accurate measure for the degrees of movement compared to the

hand placement of the electronic goniometer on the model for each change in position.

The movement of the model foot was performed by one experimenter while a second ex-

perimenter read and recorded the voltage output from a multimeter. A TPU-based sensor

and a silicone-based sensor were used for this study. Markings on the model allowed for

consistent placement of the different Liquid Wire sensors.

3.2.2.1 Testing Goals

The goals of the model testing were twofold: (a) to capture changes in resistance of

the Liquid Wire sensors relative to simulated ankle complex movement and (b) to evaluate

the different substrates in capturing simulated ankle complex movement. Previous bench

testing provided insight into the linearity of the Liquid Wire sensors; the focus of this

portion of the study is on consistent linearity occurring in simulated joint rotation.

3.2.2.2 Equipment

The ankle model was constructed of a 1/2′′ wooden base with a vertical wooden 2′′ ×

4′′ spine screwed to the base. Two additional 2′′ × 4′′’s were used, allowing for the flexible

flooring to be securely screwed to the bottom 2′′ × 4′′. The additional 2′′ × 4′′ was placed

on top of the flooring material and secured by screws into the 2′′ × 4′′ spine. Another 2′′

× 4′′ was attached to the top of the flooring material which represented the foot. Images

of the model are shown in Figure 3.7. The sensor was connected to a Wheatstone bridge

circuit that was arranged as described in the Linearity Testing portion of Section 3.2.1.3.
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Figure 3.7: Pictures of the ankle model mockup. (a) Measurements taken with goniometer;
(b) Measurements taken with smartphone levels.

3.2.2.3 Test Procedure

Two researchers compiled the data onto a Microsoft Excel formatted sheet. After prop-

erly applying and securing the sensor with toupee tape and an anchor strap, and mounting

the smartphones onto the model, one researcher moved the model’s foot and called out the

number of degrees of movement. The second researcher then recorded the multimeter out-

put onto the Excel sheet. After recordings were taken, calculations were run based on the

previously given Equations (3.1) and (3.2) to determine the resistance of the Liquid Wire

sensor.

3.3 Results and Discussion

This section discusses the results of the Liquid Wire TPU and Silicone sensors con-

ducted in Section 3.2 (a) the bench testing on linearity; (b) temperature testing; and (c)
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changes in resistance during a static positioning representing PF, INV, and EVR on the

ankle model.

3.3.1 Liquid Wire Testing Results

The following three subsections discuss the results gathered and their relevance to the

testing goals (a), (b), and (c) as defined in Section 3.2.1.1.

3.3.1.1 Linearity Testing Results

The results in Figure 3.8 address testing goal (a) of Section 3.2.1.1, which was to vali-

date that the Liquid Wire sensor was linear in resistance versus stretched length. Linearity

in stretched length was evident for both the Micro-Ohm Meter and the Wheatstone bridge

circuit. Figure 3.8 depicts linearity test data collected for each method as well as their

coefficient of determination values.

3.3.1.2 Temperature Testing Results

Next, testing goal (b) of Section 3.2.1.1 was addressed, which was to validate that the

Liquid Wire sensor was linear in resistance versus temperature. Based on the data gath-

ered, temperature did not have a drastic effect on the linearity of strain on the Liquid Wire

sensors. However, one interesting result was that temperature did appear to have an effect

on the TPU sensor’s resistance overall, as the values measured increased with tempera-

ture. Based on the data collected from the silicone sensor, there appeared to be minimal

correlation with resistance and temperature. This finding is important when considering

tying resistive values to the tracking of movement on the human body. If the TPU sensor is
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Figure 3.8: Data collected for linearity testing for resistance versus the stretch length. (a)
Micro-Ohm Meter results; (b) Wheatstone bridge results. (c) Constant Current results.
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used, extra temperature sensing may be needed to correct an increase in resistance value if

the sensor’s temperature is affected by the human’s surface body temperature. Results are

shown in Figure 3.9.

3.3.1.3 Computing Unit Testing Results

Finally, the computing unit prototype was compared against a Micro-Ohm meter to

satisfy testing goal (c). The prototype constructed for taking measurements of the Liq-

uid Wire sensor proved to be a viable solution. An average percent error of 1.55% was

calculated between the measurements taken from the computing unit and the Micro-Ohm

meter. This could have been due to the calculations performed by the microprocessor, or

from researcher error when resetting the linearity testing apparatus. Results are shown in

Figure 3.10. These results show that the computing unit is very close to measurements of

a high–accuracy, laboratory unit.

3.3.2 Estimating Angles from Liquid Wire Measurements Testing Results

To test the linearity of both the Liquid Wire TPU and Silicone sensors, the model was

moved and held at specific, static degrees representing human ankle complex PF. This

resulted in the degree of PF as the independent variable and sensor resistance as the de-

pendent variable. Using a regression analysis comparing the change in sensor resistance

when stretched due to changes in increasing ankle model’s PF resulted in the development

of two mathematical models. The significance level was set at α = 0.05 for all of the anal-

yses. The Fit Regression Model analysis (MiniTab18 Statistical Software, USA), revealed

the regression models for the Liquid Wire TPU (Equation (3.4)) and Liquid Wire silicone
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Figure 3.9: Data collected for temperature testing for resistance vs length stretched. (a)
TPU; (b) Silicone.
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Figure 3.10: Comparison of Computing Unit and Micro-Ohm meter measurements col-
lected.

50



www.manaraa.com

sensor (Equation (3.5)), which produced linear models with coefficients (p–value ¡0.001).

Thus, the model provides the expected value of sensor resistance in Ohms when varying

degrees of D, which is angle of PF in degrees. RTPU is the resistance estimate for the

TPU sensor, and RSIL is the resistance estimate for the silicone sensor, respectively. The

rotational aspect of the model resulted in almost equal changes in resistance of the sensors.

This provided insight into the requirement of using multiple sensors to assess ankle INV

and EVR. Due to the symmetry of the change (Figure 3.12), it would not be possible for the

software to determine whether the change in resistance was INV or EVR. In future human

trials I will assess changes in degrees of ankle complex movement from specific ranges of

sensor resistance. Measurement results of the Liquid Wire sensor are shown in Figure 3.11

and Figure 3.12.

RTPU = 10.9831 + 0.01142D (3.4)

RSIL = 6.2922 + 0.05194D (3.5)

3.4 Conclusions

The purpose of this research was to find a way to mitigate some of the concerns regard-

ing wearable technology identified by the SMEs interviewed in response to the NSF I–Corp

project. The first noted concern was the lack of wearable solutions that capture data “from

the ground up” and provide meaningful data about the ankle complex. The researchers ad-

dressed this concern by focusing on a sensor-based solution that could accurately capture

movement of the ankle complex. The second concern voiced by the SMEs was their lack

of trust for existing wearable solutions. The identification of this trust issue is accompa-
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Figure 3.11: Liquid Wire TPU and Silicone sensor measurements and model results. (a)
Change in resistance of TPU sensor relative to angle of PF on model during multiple static
testing trials. (b) Change in resistance of silicone sensor relative to angle of PF on model
during multiple static testing trials.

nied by research in literature as there are known concerns with IMU drift and the need for

calibration of wearable equipment. To address this concern, the research team investigated

liquid metal sensors to determine if they would be an appropriate measurement option in

future wearable solutions. The researchers wanted to learn if liquid metal sensors could be

utilized to capture absolute joint angles as opposed the inferred joint measurements that are

present in most wearable solutions available during the time of this study. For this reason,

Liquid Wire sensors were selected.

In order to test the Liquid Wire sensors, basic tests were performed to validate the lin-

earity of the sensors using two methods: (a) Micro-Ohm Meter and (b) Wheatstone bridge.

The results of both methods concluded that the Liquid Wire sensors show a linear correla-

tion between the increase in stretch of the sensor and the increase in resistance. Linearity of
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Figure 3.12: Liquid Wire TPU and Silicone sensor measurements and 3D surface plot
results. (a) 3D surface plot results of PF, INV, and EVR with single TPU sensor. (b) 3D
surface plot results of PF, INV, and EVR with single silicone sensor.
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the Liquid Wire sensor was tested across different temperatures with the expectation being

that these sensors would be located within adjacent materials, creating additional frictional

heat, therefore becoming warmer than room temperature. Also, Liquid Wire sensors com-

prised of different substrates were tested for linearity at different temperatures with the

similar expectation that they must be comfortable to the wearer, as the sensors may be em-

bedded in or on top of material that is in close contact with the skin and therefore different

materials may offer different comfort. Linearity remained consistent regardless of temper-

ature or substrate. This is important to know as the the sensor could be closer to room

temperature at the beginning of an exercise and closer to body temperature as the exercise

progresses so compensating for different resistance values will be important for correctly

and consistently correlating ankle complex movement to sensor outputs. For future data

collection, a computing unit was built to collect resistance values. This computing unit was

validated against a Micro-Ohm Meter to insure accuracy and consistency of the readings.

It was determined that the voltage divider circuit is more practical than the Wheatstone

bridge at this time, since I don’t currently have a consistent resting resistance to work with.

Furthermore, using the voltage divider reduced the size of my circuit and allowed me to

measure more sensors at the same time with the ADC module, which could end up working

in my favor for future product hardening.

To further test Liquid Wire capability in the context of ankle complex movement, a

model of the human foot and ankle was constructed to provide a platform on which to

attach the sensor and test for very specific human movements such as PF. With the aid of

the ankle complex model, both substrates were tested while performing the PF motion and
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both TPU– and silicone-based sensors were found to have a significant relationship be-

tween the positional change and the resistance values therefore confirming that the Liquid

Wire solution is effective for accurately capturing these types of movements.

The results of the study ultimately confirm the researchers’ hypothesis that liquid metal

sensors, and Liquid Wire sensors specifically, can serve as a mitigating substitute for IMU-

based solutions that attempt to capture specific joint angles and movements. The solution

that the researchers have begun to design based on this Liquid Wire-based ankle complex

wearable concept will be effective in overcoming the primary concerns identified by the

SMEs that use wearable technology in athletic and training environments.

3.4.1 Limitations

To the knowledge of the researchers performing this study, this research was the first

of its kind; therefore, limitations were identified during the discovery process. First, the

Wheatstone bridge circuit used to power the sensors and capture sensor resistance exhibited

small levels of noise causing minimal variations in voltage output at the time of data capture

readings. Creating a printed circuit board (PCB) for future research will help to solve this

problem by reducing the sensitivity of the analog signal to noise. The Liquid Wire sensors

themselves did not appear to contribute to the noise in the measurements and so a PCB

solution should mitigate this problem.

Second, because a wooden model of the ankle complex was used and not a real human

ankle, there were limitations in the ability to capture certain movements such as DF. In

order to capture DF, the sensor needed to be fastened to the wooden model in such a way as
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to keep the Liquid Wire sensor in a stretched position so that a reduction in resistance could

be measured as the “foot” was lifted back and toward the “shin”. However, if the sensor’s

position begins at rest and no stretching is applied to the sensor, then the resistance value

will not change and therefore will not be representative of movement changes. Beginning

trials with the Liquid Wire sensor in a stretched state posed an issue for the researchers

because of the length of the sensor and the rigid nature of working with the wooden model

that led to stretching the sensor beyond its 20% stretch limitations. This over-stretching

often resulted in a damaged sensor or damaged sensor terminals. For this reason, DF has to

be demonstrated by a reverse of the methods used to test PF which prove the capability of

the sensor in that it remains linear as the stretch state is removed but is not representative

of real DF movements. Furthermore, due to the sensor being set in a stretched state and

the method by which it was mounted, there would sometimes be slippage at the point

at which it was mounted. Since the sensor output is also sensitive to change based on

pressure, this caused variation in the resistance measurements taken at each angle for PF.

The researchers believe that the dimensions of the wooden model versus the dimensions of

a real ankle complex attribute to these challenges. This measurement was also difficult to

make because only one sensor was used, leading to the next limitation.

Third, ankle complex movements are complicated and three–dimensional in nature.

Only using one sensor to take measurements limited the movements that could be studied.

For example, INV and EVR occur when the foot is turned either inward or outward respec-

tively. A single Liquid Wire sensor is able to determine (through an increased resistance

value) that movement at the ankle has occurred when an INV or an EVR movement is
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made. However, the sensor cannot differentiate between these two movements. Likewise,

when a PF movement is combined with either an INV or EVR movement, there is no way

to differentiate between the amount of stretch caused by the PF version verses the other

movement. Multiple sensors are needed to identify direction and magnitude of the ankle

complex movement.

Lastly, an important lesson learned on the part of the experimenters is the desire for

consistent and common resting resistances (resistances when the liquid metal sensor is not

stretched) for the Liquid Wire sensors. While all sensors were linear in their movement–to–

stretch resistive output, not all sensors held comparable resistance values at rest. Due to the

variation in resting resistances, a more flexible circuit was required, but this will add more

complexity to the programming for the computing unit to determine resting resistances for

the sensors. This was less of an issue as only one sensor was being tested at a time, but

as this team moves forward with human trials and multiple sensors to capture the more

difficult movements of DF and INV/EVR in addition to PF, a consistent resting resistance

is preferred with a known, minimal variance.

3.4.2 Future Work

Additional work has already begun with the Liquid Wire sensors including human trials

where multiple sensors with the same resting resistances will be positioned on participants

in order to perform static and dynamic movements of the foot and ankle. As the limitations

of this study showed, multiple sensors will need to be positioned around the ankle com-

plex in order to capture more complicated movements, but where these sensors should be
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placed and how they will be held in place on the participant is a critical discovery. Using

machine learning, the researchers will be able to take the resistance values from multiple

sensors anchored to a participant and determine the exact position of the foot and ankle.

This positioning will then be validated using motion capture and force plate feedback al-

lowing the researchers to identify the capability delta between the SRS solution and the

golden standard of human movement analysis. Further, once preferred Liquid Wire sensor

placement is identified, a proper gait study on human participants using static and dynamic

movement assessment techniques will be used to validate that data “from the ground up”

is being properly captured and that precise ankle complex movements are correctly identi-

fied. Once the machine learning algorithms are adequately refined for walking movements,

product hardening will occur for testing of training-based movements commonly used by

athletes outside of the lab in their practice environments.
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CHAPTER 4

PLACEMENT

This chapter is based on publication [89].

4.1 Introduction

Biomechanical analyses of human joint range of motion (ROM) have evolved from

simple goniometric measures to technologically advanced optical motion capture systems.

While motion capture technology aids in the assessment of joint range of motion with

gold standard precision measures [27], the use of this technology is primarily confined

within a laboratory setting, with limited applicability to changes in joint angles that occur

in everyday tasks. Moreover, the financial cost and time consumed are also greater with the

use of laboratory-based motion capture equipment. Therefore, there is great demand for

alternative solutions to precisely measure joint kinematics outside of a laboratory that have

lower financial and time cost requirements and can capture day-to-day real-life scenarios.

A wearable device that can measure changes in joint range of motion and limit the negative

aspects of motion capture while being precise is a potentially promising solution [12].

Very recently, SRS (liquid metal sensors) that change in resistance when stretched were

used to determine if ankle joint movements could be inferred by using a custom-built, rigid-

body ankle joint mechanical device [60]. This device mimicked the ankle joint in its ability
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to perform ankle joint motions of PF, INV and EVR. A single sensor was placed on the

middle of the ankle joint device and all ankle movements were performed passively on the

device with data from the sensor recorded for each ankle movement at various degrees of

ROM quantified by using an electric goniometer and two smart phones with the RIDGID

level iOS application installed [60]. Based on the results of this study, the sensor could

provide significant linear models in predicting ankle joint PF. However, the INV and EVR

movements were still difficult to predict accurately with only a single sensor being used.

It was concluded that there was a significant linear relationship between the positional

change of the mechanical device and the resistance values of the SRS for the ankle PF

movement. This indicated that the sensor was promising to be a potential “out-of-the-

lab” substitute to inertial measurement units (IMU) and motion capture based solutions to

quantify human joint kinematics [60]. Utilizing SRS offers the advantage of contouring

over the anatomical surface of the human joints, thus mitigating the drift in measurements

associated with IMUs. Furthermore, they can be embedded into garments to function as a

wearable solution [66, 67, 118].

While SRS were found to be successfully indicative of ankle ROM during PF, INV and

EVR, these were still conducted on a mechanical ankle joint device that is far from animate

and real-life, compared to the human foot–ankle complex. The human ankle and foot—

unlike the mechanical device—has intrinsic properties of living tissues such as skeletal

muscles that are responsible for force production to cause joint rotation and bones that act

as attachment sites for muscles and as mechanical levers for human movement [25, 38].

One of the major limitations outlined in the previous study was that the ankle joint complex
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has three-dimensional movement and thus three degrees of freedom (DOF), with varied

ROM for each DOF [60]. More importantly, these DOF rarely occur in isolation in a real-

world setting or during activities of daily living but occur as a combination with other DOF

of the ankle and foot segment [25, 38]. It was also reported that a single SRS can detect PF,

INV and EVR, but it was not capable of differentiating INV and EVR [60], subsequently

mandating the need for testing human participants with active movements of the ankle and

foot segments. Additionally, the SRS placement and orientation on human participants

have not been analyzed yet, which can present additional challenges in data collection and

interpretation. Finally, the SRS data used to infer ankle and foot movements need to be

validated against the state-of-the-art technology using motion capture analyses. Therefore,

the purpose of the study was to analyze various SRS placements and orientations when

using more than one SRS, to determine good positional and surface anatomical location

of the SRS on the foot–ankle segment that provides the most accurate and precise ankle

and foot ROM measurements validated against a 3D motion capture system. The primary

contributions of this paper are:

1. The initial work in [60] was extended to human movement.

2. SRS sensor placement was analyzed and optimal sensor placement was determined
for PF, DF, INV, and EVR.

3. Linear model analysis results show high levels of goodness-of-fit and low RMSE
values, meaning the proposed placements are effective at measuring INV, EVR, PF
and DF compared to the gold-standard motion capture solution.
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4.2 Materials and Methods
4.2.1 Participants

Ten participants (five males: age, 22–24; height, 170–193 cm; mass, 71–100 kg; foot

size, 10–13; and five females: age, 23–25; height, 156–168 cm; weight, 48–66 kg; foot

size, 5.5–8) with no history of lower extremity musculoskeletal injuries/surgeries or neu-

romuscular diseases/disorders were tested. This sample was chosen to test both genders

and individuals with small, medium, large and extra-large sized feet. Since this was a pre-

liminary study, the sample size was set at 10 participants, which is consistent with a recent

study that examined gait kinematics of the foot and ankle among 10 participants [70]. All

participants read and signed an informed consent to participate in the study. The study was

approved for human subjects testing by the University’s Institutional Review Board (IRB).

4.2.2 Study Design

The study design followed a single day testing protocol with an initial familiarization

session that was conducted prior to the experimental testing. All participants visited the

Human Performance Lab (HPL) at the University’s Center for Advanced Vehicular Sys-

tems (CAVS) research center. During familiarization, all participants were briefed on the

procedures and provided an opportunity to perform a few trials of the experiment that

included simple ankle movements in a non-weight bearing (NWB), high-seated, sitting

position (explained further under experimental procedures). Following the familiarization

process, the participants performed the experimental testing.
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4.2.3 Instrumentation and Participant Preparation

The experimental testing included measurements of ankle joint kinematics using 12

Bonita 10 camera 3D motion capture system (Vicon, Oxford, UK). The SRS used in the

current study included the StretchSenseTM sensors (Auckland, New Zealand). The motion

capture data were sampled at 100 Hz and the SRS data were sampled at 25 Hz. For this

study, only the right foot–ankle complex was measured. During testing, each participant

was prepared by placing reflective motion capture marker clusters on the right lower ex-

tremity for the foot and shank (lower leg) segments. Four SRS were placed on the ankle

and foot segment in a predetermined POC, explained further in Section 4.2.4.1.

4.2.4 Movements

The participants started in neutral positions. Figure 4.1 shows the neutral, DF and PF

movements in the sagittal plane, and Figure 4.2 shows the neutral, INV and EVR move-

ments in the frontal plane.

4.2.4.1 SRS POCs

Three different POCs were determined based on bony landmarks and movement pat-

terns of the foot–ankle segment. The individual SRS were then labeled based on the move-

ment they were positioned and oriented to measure. The sensors were located in a position

that would cause them to be stretched by the corresponding joint motion. The PF SRS was

mounted on the dorsal surface of the foot to measure the downward movement of the foot,

such as when the toes are pointed towards the ground and the angle between the dorsal

surface of the foot and the lower leg increases [25, 38]. The INV SRS was mounted on the
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lateral side of the ankle to measure the movement of the sole (bottom of the foot) towards

the midline of the body [25, 38]. The DF SRS was mounted on the heel of the foot to

measure the upward movement of the foot towards the lower leg (angle between the top

of the foot and lower leg increases) [25, 38]. The EVR SRS was mounted on the medial

side of the ankle to measure the movement of the sole away from the midline of the body

[25, 38].

The PF POCs were determined based on the hallux (big toe) and surface of the top

of the foot. The PF SRS was first oriented towards the hallux, then over the middle of

the foot, and lastly towards the 5th phalanx. The INV POCs were centered around the

lateral malleolus (bony landmark on the lateral side of the ankle). The INV SRS was first

positioned anterior to the lateral malleolus, near to the 5th phalanx, then directly over the

lateral malleolus, and finally, posterior to the lateral malleolus, close to the heel of the

foot. The DF SRS was kept in the same position over the heel for all three POCs, due to

the small surface area in which the DF movement could be measured. The POCs for the

EVR SRS were determined similarly to the INV POCs, except they were based on the

medial malleolus (bony landmark on the medial of the ankle). For the first and third POCs,

the EVR SRS was kept parallel with the INV SRS. These POCs are illustrated in Figures

4.3–4.5.

4.2.5 Experimental Procedures

The participant was first instructed to fill out a participation consent form as per IRB

protocol. The participant was then given a sock attached with Velcro mounts to place on
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Figure 4.1: Sagittal plane: (a) neutral; (b) DF; and (c) PF

Figure 4.2: Frontal plane: (a) neutral; (b) INV; and (c) EVR.
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Figure 4.3: PF and DF sensor POC positions: (a) PF POC 1; (b) PF POC 2; (c) PF POC 3;
and (d) DF POC 1; The DF sensor was positioned the same for all three POCs (heel of the
foot is pictured).

Figure 4.4: INV Sensor POC Positions: (a) INV POC 1; (b) INV POC 2; and (c) INV
POC 3.
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Figure 4.5: EVR sensor POC positions: (a) EVR POC 1; (b) EVR POC 2; and (c) EVR
POC 3.

their right foot. Participants were given either a small/medium or large/extra-large sock de-

pending on their shoe size. Following this, the participant assumed a high-sitting position

in an NWB position. For the familiarization process, the examiner aided the participant

in a demonstration on how to perform each of the foot–ankle movements, encouraging the

participant to perform full ROM (i.e., moving the foot as far as possible). Following this,

the motion capture cluster sensors were mounted to the right foot and right shank, and the

sensors were calibrated (see Figure 4.6).

A validation step was then conducted, where, in the NWB position, the participant

performed full ROM of the ankle three times repeatedly, moving the foot in the specified

direction, and then returning to its original position. Each trial began with the participant

staged in a neutral position of the ankle (approximately zero degrees of DF/PF and zero

degrees of INV/EVR) which was set by the examiner using a mechanical goniometer.
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This process was equivalent to one trial and was repeated for each of the four foot–ankle

movements (PF, DF, INV and EVR).

Following the validation step, the SRS were mounted to the sock in POC 1, and the

four movements were repeated. An example of a participant completing the trial with the

sensors in POC 1 can be seen in Figure 4.6. This process was repeated for POC 2 and POC

3 (noting that the DF movement only had one POC). Both kinematic 3D motion capture

data and raw capacitance data from the SRS were collected simultaneously for each of the

sensor placement trials. Completion of the movement trials for the last SRS POC marked

the completion of the testing procedures.

Figure 4.6: Participant image showing SRS and motion capture sensors: (a) front view;
and (b) side view. The SRS sensing module is circled in red.
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4.2.6 Data Analysis

The kinematic data of ankle ROM for each DOF were determined by using the Grood–

Suntay angle orientation in the MotionMonitorTM (Innovative Sports Training, Inc., Chicago,

IL, USA) software. Raw kinematic data were filtered with a low-pass third-order Butter-

worth filter with a cut-off frequency of 15 Hz. The raw capacitance values of the SRS were

measured using the 10 Channel SPI Sensing Circuit in conjunction with the Bluetooth Low

Energy (BLE) module, both made by StretchSenseTM. The values were recorded using the

proprietary StretchSenseTM BLE iOS application.

4.2.7 Statistical Analysis

The R language was chosen for formatting and analyzing the dataset, as R automated

the analysis and is capable of powerful data visualization. The data for each trial was saved

to a file that was named according to participant ID, SRS POC, and movement performed.

This naming convention was used to pair each set of motion capture and SRS data files.

When comparing data, the SRS positioned to measure PF and DF were matched with the

Flexion column recorded by MotionMonitorTM, and the SRS positioned to measure INV

and EVR were matched with the INV column recorded by MotionMonitorTM.

To compare the motion capture data to the SRS data, several preprocessing steps needed

to be taken. First, the sampling rates needed to be matched between motion capture and

SRS. Due to limitations of the StretchSenseTM BLE module, the max sampling rate that

could be used was 25 Hz, and after further processing through the StretchSenseTM pro-

prietary iOS application, the intervals between timestamps were not always consistent.
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To mitigate this, an R approximation function was used to interpolate the SRS values based

on the timestamps collected from MotionMonitorTM, bringing the StretchSenseTM data up

to 100 Hz.

After upscaling the StretchSenseTM SRS output, the data needed to be aligned over

time with the motion capture output, as a slight delay existed due to the need to manually

start the data recording on each measurement system. Cross correlation was utilized to

determine the proper data time alignment, based on the recommendation of Rhudy [87].

The function was utilized based on the sensors measuring the movement performed (i.e.,

PF SRS used to align PF movement data), as it would be expected that both datasets would

consistently produce three distinct peaks, each peak being representative of the foot move-

ment performed by the participant during each trial. When EVR or PF was being mea-

sured, the motion capture data were inverted before performing cross correlation, as these

movements were measured in the negative plane when recorded by MotionMonitorTM.

Finally, all data points where the motion capture data moved into a negative position

or below the trial’s starting angle for the participant were dropped. This was implemented

due to the sensor’s limitation of only being able to capture one direction of the ROM, since

the sensor needs to be in tension. For example, if the participant was performing PF but

went into slight DF during their foot–ankle movement, the sensor measuring PF would lose

tension and record no movement, thus becoming unreliable for measuring a linear change

in capacitance. The motion capture Flexion output would record this as a negative flexion

value (indicating the participant moved into DF), so these flexion values would be removed.

Since the participant began each trial in a position of 0 degrees of flexion, this could be
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Figure 4.7: Examples of Preprocessed data: (a) preprocessed data for PF movement at
POC 2; (b) preprocessed data for DF movement at POC 2; (c) preprocessed data for INV
movement at POC 2; and (d) preprocessed data for EVR movement at POC 2.
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used as a reliable threshold for measurement, as care was taken to ensure there was some

tension in the SRS at this position. An example of the preprocessed data is depicted in

Figure 4.7. This graph presents scaled versions of the two datasets and was generated for

all trials for visual inspection to make sure the data was preprocessed correctly.

Once the data were properly formatted, a linear model was created based on sensor ca-

pacitance versus motion capture angle. TheR2 value and root-mean-squared error (RMSE)

were then calculated based on the linear model, and a plot of all residual values from

the model was created for visual inspection. Figure 4.8 provides examples of this plot,

with magnitudes of residuals being double encoded with size and color. Finally, a table

was generated, characterizing each of the trials with the calculated R2 value and RMSE to

provide a measure of how well the SRS modeled the motion capture data.

To determine which sensor position configuration performed well at modeling the mo-

tion capture data, three metrics were considered: accuracy of angle prediction, consistency

in prediction performance, and robustness across participants. Accuracy of angle predic-

tion was determined based on observing which trials resulted in the highest average R2

value, which indicates a goodness-of-fit of the linear model, and the lowest average RMSE

value, which measures how accurately the model predicts the response in units of degrees

[33]. Consistency in prediction performance was evaluated based on the standard deviation

of the R2 and RMSE values across all participants for each SRS POC.
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Figure 4.8: Residual plots: (a) residual plot for movement at POC 2; (b) residual plot for
DF movement at POC 2; (c) residual plot for INV movement at POC 2; and (d) residual
plot for EVR movement at POC 2.
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4.3 Results

The results for the three aforementioned metrics are summarized in Table 4.1. The

best results for each metric for each POC are identified in bold. Figure 4.9 captures the

performance of the accuracy and consistency metrics for each POC. The average values

are calculated and plotted as single points, and a horizontal line is drawn to indicate the

location of the best performing average value. Figure 4.9 also depicts violin plots, which

are the curved areas along each POC that gives an idea of the “spread” of the data. These

violin plots represent a kernel density distribution portrayed vertically. A greater horizontal

width of a curve in the plot indicates a greater portion of participants that produced results

near the value on the y-axis. For example, in Figure 4.9a, a large portion of participants

produced an R2 around 0.95–0.99 for the INV sensor at POC 2, while participants were

more spread out at R2 values of 0.97–0.65 for the INV sensor at POC 3. When comparing

these graphs visually to the standard deviation values in Table 4.1, distributions resulting

in the lowest standard deviation values are easily identifiable. Additionally, given that the

individual participant data points reiterate the “spread” of the data, the POCs producing

the most outliers can be easily identified as well.

To determine which SRS POCs were the most robust, a histogram was created based

on which POC produced the highest R2 value or lowest RMSE value for each participant.

The POC that most frequently resulted in the best value was considered the most robust.

The motivation for this metric was to get an idea for how well each POC performed against

the variety of foot sizes amongst each of the participants. The results of this metric are seen

in Figure 4.10 and also recorded in Table 4.1.
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The SRS were also evaluated to determine how well they tracked multiple movements

beyond the single movement that they were positioned to record. For example, the PF SRS

is placed on the top of the foot–ankle to capture the movement, but because the participants

also performed INV and EVR movements while the PF SRS was mounted, the PF SRS

could be evaluated for other foot–ankle movements; essentially, this assessment was com-

pleted to determine if measuring multiple movements with one SRS was feasible. Thus,

a new table was generated identifying R2 and RMSE values for all four SRS for each trial,

regardless of the primary movement that was being measured.

In Figure 4.11, the results can be seen for each movement based on the SRS that was

observed. The titles for each subgraph indicate the movement that was performed by the

participant, while the color of each data point represents the movement that the SRS was

originally intended to measure based on the POC. One thing to note on the R2 graph

is that an inverse relationship will also produce a high R2 value, hence why the EVR

SRS produced a reasonably good R2 value when used to measure the INV movement.

As the foot goes further in the INV movement, it can be expected that the EVR SRS would

decrease in value, if there is still tension in the SRS.

Lastly, gender and shoe size were compared to see if they influenced the quality of

the SRS’s measurements. For this study, all females used the small/medium sock, while

all males used the large/extra-large socks, so both categories are encoded in the following

results. Figure 4.12 presents average R2 and RMSE values between both genders for each

SRS POC.
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Figure 4.9: Violin plots: (a) R2 average and Violin plot comparison for all POCs; and (b)
RMSE average and Violin plot comparison for all POCs.
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Figure 4.10: Number of participant counts: (a) number of participants where SRS POC
resulted in the highest R2 values; and (b) number of participants where SRS POC resulted
in the lowest RMSE value.
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Figure 4.11: Comparison of R2 and RMSE values: (a) comparison of average R2 values
for all SRS at all POCs; and (b) comparison of average RMSE values for all SRS at all
POCs. Note that in both comparisons DF only had one SRS POC.
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Figure 4.12: (a) Comparison of average R2 values for all SRS between genders/foot size;
and (b) comparison of average RMSE values for all SRS between genders/foot size.
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Table 4.1: Averages, standard deviations, and participant count of R2 and RMSE values
for all POCs; best POC in bold. * Denotes preferred POC location for each of the four
foot–ankle movements. Deg., degrees; Std. Dev., standard deviation.

Movement
Position and
Orientation

Configuration
(POC)

R2

Average
(Figure 4.9a)

RMSE
Average

(deg.)
(Figure 4.9b)

R2

Std.
Dev.

RMSE
Std.
Dev.

(deg.)

Higest R2

Number of
Participants

(Figure 4.10a)

Lowest RMSE
Number of

Participants
(Figure 4.10b)

EVR POC 1 0.9068 2.2378 0.1123 1.0159 1 3
EVR POC 2 * 0.9525 1.5269 0.0727 0.5186 7 6
EVR POC 3 0.9100 3.1628 0.0845 2.0127 2 1
INV POC 1 0.9739 2.0407 0.0225 1.0939 6 6
INV POC 2 * 0.9755 2.1340 0.0178 0.8838 4 3
INV POC 3 0.9153 3.6455 0.0977 2.6128 0 1
PF POC 1 * 0.9898 2.2996 0.0056 0.7616 6 5
PF POC 2 0.9877 2.5274 0.0046 0.4376 1 2
PF POC 3 0.9861 2.7679 0.0076 0.9216 3 3
DF POC 1 * 0.9567 1.0568 0.0410 0.4952 N/A N/A

4.4 Discussion

The purpose of the study was to use a 3D motion capture system of human participants

to identify SRS POCs that accurately record the four primary movements of the foot–ankle

complex: PF, DF, INV, and EVR. More specifically, the purpose was to examine what

combination of four SRS will most accurately measure ankle movements in four directions

compared to the golden standard for human movement assessment. Given the complex

nature of using a linear solution to accurately quantify movement of a triaxial joint, move-

ment was captured from 10 participants and multiple tests were performed to analyze the

SRS capacitance output from multiple positions around the foot–ankle. This section out-

lines the findings for each of the four individual movements analyzed in this study from

most simple POC placement preference to the most difficult.
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4.4.1 Dorsiflexion (DF)

DF was the only foot–ankle movement where just one POC placement was tested.

Only one POC was needed for this movement because the anatomy on the posterior side

of the foot, primarily the calcaneus (heel), only provides one location for POC to accu-

rately measure DF [25, 38]. However, SRS accuracy still needed to be validated against

motion capture similarly to how all other SRS POCs were evaluated in order to establish

baseline confidence in the solution. DF POC 1 had a high R2 average above 0.95 over

all participants meaning that nearly all values of the SRS correlate directly to the flexion

values captured via motion capture (Table 4.1 and Figure 4.9a). Therefore, there is a high

level of fit between SRS and motion capture for the DF movement across all participants.

Likewise, where a high R2 average is an indicator of relative measure of fit, a low RMSE

average value indicates an absolute measure of fit. DF POC 1 scored a low value for all

participants for RMSE average further confirming the SRS measurement’s fit to motion

capture (Figure 4.9b). PF was the closest comparable movement as Figure 4.11 demon-

strates that DF and PF are opposing movements [25]. POC 1 was confirmed to be the

proper SRS placement for DF and there was minimal difference in average R2 and RMSE

values between men and women and/or foot size (Figure 4.12).

4.4.2 Eversion (EVR)

The second simplest SRS placement was found to be POC 2 for EVR. Three POCs

were tested and six measurements were taken to decide optimal positioning for EVR. All

six measurements (Table 4.1) clearly indicate POC 2 as the best location for SRS based data
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collected via motion capture. The R2 average was high, over 0.95, and RMSE average was

low indicating good fits for both relative and absolute measures respectively (Figure 4.9).

Most participants had the highest R2 values and lowest RMSE values for POC 2. POC 2

demonstrated the best comparison movement with INV (Figure 4.11), the proper opposing

movement to EVR, for bothR2 and RMSE calculations. The comparison ofR2 and RMSE

for EVR between men and women participants occurred at POC 2 as well, as observed in

Figure 4.12.

While no outliers were removed for this study, there were some notably different data

points for EVR R2 calculations and EVR POC 3 RMSE that needed to be investigated

to ensure that POC 2 is absolutely the better SRS placement selection. For a few of the

participants, performing foot–ankle movements such as EVR and INV in isolation was dif-

ficult because some PF also occurs with INV and EVR movements [25, 38, 39, 102, 107].

The worst case of a participant’s inability to disassociate the two movements and perform

true INV and EVR movements was captured by participant P03. To confirm that P03’s

movement should not impact final placement decisions for EVR, the motion capture data

were evaluated to understand why the participant’s R2 and RMSE averages were much

lower and higher, respectively. Figure 4.13 demonstrates that, as P03’s “INV/EVR” move-

ment experienced negative peaks (indicating an EVR movement), their “Plantar flexion”

movement peaked showing a correlation between the two movements and thereby con-

firming that EVR for P03 was not in true isolation. The reason this is important from an

SRS placement perspective is that, by moving into PF, P03 reduced tension on the SRS

and therefore reduced the capacitance value output indicating that the SRS output would
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not demonstrate as strong of an EVR movement as compared to the true EVR movement

captured in motion capture, thus further weakening R2 and RMSE fit.

4.4.3 Plantar Flexion (PF)

SRS placement for PF was not quite as definitive as EVR but was still very compelling

as four of six metrics used for evaluation Figure 4.3 indicated POC 1 being the best fit. R2

average value was extremely high at over 0.98 and RMSE average was the lowest of the

three positions for POC 1 (Figure 4.9). While standard deviation of R2 and RMSE was not

the lowest for POC 1, six of 10 participants had the highest R2 and lowest RMSE for this

position (Figure 4.10). DF is the closest opposing movement for POC 1 (Figure 4.12) as

expected while POC 1 indicates the best fit for both men and women (Figure 4.13).

4.4.4 Inversion (INV)

Of all the movements, determining the placement for INV was the most challenging,

because two POC options, POC 1 and POC 2, appeared to be nearly identical in perfor-

mance. POC 2 demonstrated the best R2 average at over 0.97 (Figure 4.9a), but POC 1

was just slightly lower (Table 4.1). RMSE average was lowest for POC 1 (Figure 4.9b),

but POC 2 was only slightly higher. Standard deviation adjustments for R2 and RMSE

both indicated POC 2 as the better fit but the total number of participants with the better

fit values indicated POC 1 as the optimal location for placement (Figure 4.10). To make

a decision as to the best POC for SRS placement regarding INV movements, the research

team considered the following three pieces of information: (a) R2 is often viewed to be the

better indicator of fit; (b) the POC selected for EVR (the opposing movement to INV) in
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Figure 4.13: (a) Comparison of motion capture and StretchSenseTM when EVR movement
not performed in isolation. Both datasets scaled and motion capture data inverted to depict
relationship between sensing methods. (b) Raw motion capture data for PF movement. (c)
Raw motion capture data for EVR movement (negative values).
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order to promote uniformity and sensor placement during wearable design; and (c) picking

either POC has limited negative ramifications given that the output for each is so similar.

For this reason, POC 2 was selected for INV. these results indicate that both POC 1 and

POC 2 provided good results, and that this motion was not as clearly delineated as the other

movement cases.

Similar to EVR, some participants had issues isolating their movements to only perform

INV without PF. INV is a difficult joint action to perform in isolation [25, 38, 39, 102, 107].

In addition, similar to Figure 4.13, Figure 4.14 shows that, as their “Inversion MoCap”

movement experienced positive peaks (indicating an INV movement), their movement also

peaked showing the same correlation between the two movements while also reducing

stretch on the SRS thereby reducing capacitance value output.

4.4.5 Limitations

As noted in the Discussion Section, a few participants had a difficult time isolating their

movements and so PF was performed during INV and EVR trials. This is not an issue for

motion capture as the cameras and markers can accurately observe all joint angle move-

ments regardless of the movement type. However, SRS capacitance values are dependent

upon consistent tension and stretch that occurs linearly. By performing two movements

at once (e.g., PF and INV), the tension was reduced, and capacitance was lowered thus

recording “weaker” values and further lowering and raising R2 and RMSE averages, re-

spectively. This was only an issue, however, because one sensor was being observed at

a time. With multiple SRS output being captured simultaneously for all four movements,
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Figure 4.14: (a) Comparison of motion capture and StretchSenseTM when INV movement
not performed in isolation. Both datasets scaled to depict relationship between sensing
methods. (b) Raw motion capture data for PF movement. (c) Raw motion capture data for
INV movement (positive values).
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PF would have been captured in addition to INV and EVR. However, this does not solve

the issue of a lack of tension in the INV and EVR SRS every time an additional PF move-

ment is performed. Mitigating these issues will likely require additional investigation into

the initial “tightness” of the SRS while the wearer is in a neutral position. In addition,

because EVR and INV are opposing movements, information about one movement can

be inferred from the other. Further, with all four sensors collecting foot–ankle movement

data, machine learning solutions can be developed to further enhance robustness of the so-

lution. Utilizing more sophisticated modeling techniques with multiple sensors as inputs,

the output angles for each foot–ankle complex motion may become more robust and have

lower errors.

In addition, this study used participants with bare feet (i.e., no shoes). From a prod-

uct development perspective, creating a solution that utilized the capabilities of the SRS

while still allowing the users to wear shoes would be the ideal scenario. The intent of

this study was to find the best SRS placements in order to accurately quantify foot–ankle

movements. While a sensor that conforms to the curvature of the ankle complex on top of

the sock is an ideal end state, this study was strictly about validating placement. Creating

a fully SRS-integrated, sensor-ladened compression sock is the end goal for this research,

but confidence in positioning is necessary prior to incorporation of the technology into the

textile materials.
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4.4.6 Future Work

With each SRS POC identified, the next logical step is to conduct a study where all four

SRS are placed on participants who are performing dynamic movements such as walking

while also wearing motion capture markers for continued validation. With walking data,

the research team will begin to understand more about the interactions between all four

sensors as they collect information on the same movement but from different locations

about the foot and ankle. The same validation tests can be performed as an assessment of

fit that will be performed against motion capture output. Basic walking movements on a

flat surface at a normal pace will need to be observed. In addition, to engage true INV and

EVR movements, participants will need to walk on a slightly inclined surface. Further,

both feet and ankles will need to be assessed during the same gait movement. Should

this SRS solution be verified as an accurate assessment tool for gait, there will be many

rehabilitation- [50, 80, 20] and athletic-based [124, 31] opportunities for an off-the-shelf

sensor solution that nearly duplicates the accuracy of motion capture yet was originally

intended for the use in soft robotics.

Machine learning has been applied to body sensor networks [93], rowing coaching

[2], and human gait analysis [100, 45], to name a few. I plan to apply machine learning

techniques when linear models are not adequate or to combine multiple SRS inputs into an

output, such as estimating INV or EVR angles.

Our current study is a preliminary work on testing the efficacy of the wearable sensors

for the foot–ankle complex movements. In this regard, my focus was to assess the per-

formance of the sensors within the first standard deviation, and, hence, the sample size of
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ten human subjects. However, in considering the design of wearable sensors for the foot–

ankle movements, I plan to test the performance of these wearable sensors that would be

applicable for 95% of human subjects (the human subject number would be greater than

that implemented in the current study).

4.5 Conclusions

Upon completion of the participant trials, R2 and RMSE averages were used to de-

termine both relative and absolute fit for the SRS output as compared to motion capture.

Robustness was determined by how many participants had the same POC selection for each

movement type. Standard deviation for R2 and RMSE was calculated for each participant

as well. In addition, opposing movement comparisons were made for each SRS POC and

comparisons between gender and foot size were observed.

Through these many evaluations, SRS POCs that best captured foot–ankle movement

were determined with a high level of confidence. POC 1 was selected for both PF and

DF and POC 2 was selected for both INV and EVR. With these placements identified, this

research team is confident that a true gait assessment that rivals the accuracy of 3D motion

capture systems can be performed using only four, off-the-shelf SRS sensors. The solution

verified on human participants within this study essentially creates a real-time, continuous,

and consistent electric goniometer that a user can wear to accurately assess their move-

ments “from the ground up” [60].
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CHAPTER 5

GAIT

This chapter is based on publication [88].

5.1 Introduction

The biomechanical analysis of movement patterns, such as walking gait, is essential to

understanding how an individual can maximize movement [114]. A typical gait cycle spans

two consecutive events of the same limb, usually with initial contact to an external surface

[112]. Throughout one gait cycle, each lower extremity passes through two phases: (a) A

stance phase and (b) a swing phase [112]. During the stance phase, five different movement

stages with corresponding joint angles are executed: (a) Initial contact/heel strike (0◦ of

ankle and knee flexion/extension, 20◦ flexion of hip joint), (b) foot flat (5◦ plantarflexion

of ankle, 15◦ of flexion of knee and hip joints), (c) midstance (5◦ dorsiflexion of ankle,

5◦ flexion of knee, 0◦ of hip), (d) heel off (0◦ of flexion of ankle and knee, 10–20◦ of

hyperextension of hip), and (e) toe-off (20◦ plantarflexion of ankle, 30◦ of knee flexion, 10–

20◦ of hyperextension of hip) [112]. The second stage–the swing phase–consists of three

stages: (a) Acceleration (10◦ plantarflexion of ankle, 30◦ flexion of knee, 20◦ of flexion of

hip), (b) midswing (0◦ ankle flexion, 30◦ flexion of knee and hip), and (c) deceleration (0◦
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of ankle and knee, 30◦ flexion of hip) [112]. The ability to capture these joint kinematics

is made possible through 3D motion capture and wearable technology.

Biomechanical analyses of gait have become a valuable tool for practitioners to assist

in clinical diagnoses, strength and conditioning (S&C) specialists to improve athletic per-

formance, and therapists to promote rehabilitation. To monitor gait, 3D motion capture

is considered the optimal system for identifying kinematics and kinetics of the gait cycle

[27]. However, 3D motion capture traditionally takes place in a laboratory setting which

can hinder the opportunity to analyze a real-life scenario and can be quite expensive due to

the costs of required equipment [27], as well as the steep learning curve. Moreover, wear-

able sensor technology is another option to analyze kinematics during a real-life scenario

either in a rehabilitation clinic or on a competitive playing field [12].

Various types of wearable sensor technology (WST) have increased in popularity on the

market such as accelerometers, gyroscopes, micro electromechanical systems (MEMS),

and inertial measurement units (IMUs) [24, 26, 22]. Being portable, WST allows remote

monitoring in real-life environments as opposed to the simulated laboratory setting. In

addition to portability, WST is inexpensive when compared to a 3D motion capture system

[12]. However, there are several reoccurring problems with several types of WST such as

an IMU. According to Filippeschi et al. (2017), IMUs have issues with reducing drifts,

magnetic disturbances, and calibration. Due to non-homogenous magnetic fields, mainly

from construction building materials and magnetic interference, distortion and drift affect a

sensor’s vertical and horizontal data [24]. A sensor system that could simulate stretch and

strain around the joints may offer an alternative method to gait analysis rather than using
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stiff, circuit board-based IMUs [60]. Consistency and calibration issues regularly result

from sensors on the market, a potential solution may lie in the form of a different type of

sensor, such as stretchable SRS) [60].

Due to the reoccurring issues with wearable technology, the purpose of this paper is to

continue the research and development narrative for building a new SRS-based wearable

solution that closes the WST gap identified by the practitioners [60]. This paper suggests

alternative methods for capturing the human gait cycle in a real-life setting for more pre-

cise rehabilitation techniques and improvement of athletic performance. Luczak et al. [60]

and Saucier et al. [89] recommend a more accurate technology—stretchable SRS accom-

panied by liquid conductive material, placed in garments, that can be directly placed on

joints to analyze joint kinematics [60, 89]. There are several benefits for using SRS which

include (a) the capability to capture biomechanical strain without the occlusion of errors

that normally occur in 3D motion capture systems and eliminate drift that can arise in

IMU sensors [60]; (b) the realization of small changes in electromechanical specifications

during loading and unloading; and (c) limited interference observed by the consumer. In

addition, SRS inherently offer “stretchability,” which allows the sensors to cover the joints

of the human body [89].

5.2 Materials and Methods

In Parts II and III of “closing the wearable gap” paper series [89, 13], both 3D mo-

tion capture and SRS were used to assess specific foot-ankle movements. Part II analyzed

the four primary foot-ankle complex angles—PF, DF, INV, and EVR—during static move-
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ment assessments where each angle was measured separately [89]. Part III captured PF

and DF during dynamic slip and trip movements that were both expected and unexpected

[13]. For Part IV of this series, all four foot-ankle movements will be captured simul-

taneously during dynamic gait trials. Therefore, due to similarities in equipment, study

design, and discovery intent, much of the layout and wording of this section will originate

from the previous papers [89, 13] with modifications to describe (a) the new population

of participants and (b) modifications in the methods to shift from single sensors capturing

static movements and two sensors capturing dynamic slips and trips to four sensors per leg

capturing dynamic gait movements.

5.2.1 Participants

A total of 20 participants (10 males: Height, 168–193 cm; mass, 61–117 kg; foot size,

10–13; and 10 females: Height, 158–168 cm; mass, 50–113 kg; foot size, 5.5–10) with

no self-reported history of lower extremity musculoskeletal injuries or surgeries and neu-

romuscular diseases or disorders were tested. Note that participant foot sizes are indicated

using US shoe size measurements. This sample was chosen to examine both genders and

individuals with small/medium and large/extra-large sized feet. Since this was a gait as-

sessment study, the sample size was set at 20 participants, which is consistent with recent

gait-based literature [70, 7, 32, 8]. The study was approved for human subjects testing

under the University’s Institutional Review Board (IRB; protocol #17-725). Informed con-

sent was obtained for all participants after fully explaining the protocol along with the risks

and benefit involved.
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5.2.2 Study Design

All participants were instructed to visit the Human Performance Laboratory (HPL) at

Mississippi State University’s Center for Advanced Vehicular Systems (CAVS) research

center. The study design followed a single day testing protocol with an initial familiariza-

tion session that was conducted before the experimental testing. During familiarization, all

participants were briefed on the procedures and provided an opportunity to perform a few

trials of the experiment that includes a self-paced, regular speed walk on both a flat surface

(FS) and a tilted surface platform (TSP). The FS was comprised of four, half-inch thick

rubber mats that were 0.91 by 1.52 m in size. The short edge of the mats was aligned such

that a rubber walkway of 6.10 m covered the middle section of the HPL floor running south

to north from the entrance side to the room to the back portion of the room. A linear walk-

ing space of 6.10 m is enough to capture at least three full gait cycles for an average person

[115]. Since the FS does not induce INV or EVR at the foot, a TSP was designed and

built such that INV and EVR at the foot-ankle complex could be recorded for participants

during their self-paced gait cycles. A wooden platform was built to be 1.22 m wide by 7.32

m long, creating a walkway tilted at 10 degrees. The same type of rubber mats used on

the floor for the FS was placed on the TSP as not to create a confounding variable between

walking on different surface types. The walkway, running parallel to the FS trial area of

the HPL, weighed over 54.43 kg and therefore was not susceptible to slippage during a

participant trial. The platform surface angle of 10 degrees was validated using the bubble

level application (PixelProse SARL Tools) on an iPhone (Apple). The TSP designed for

this study was inspired by the dimensions and slope of a walkway built for a railroad bal-
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last surface [51] in which similar participant INV and EVR characteristics were studied.

Figure 5.1 shows the TSP with rubber mat surface. Following the familiarization process

for gait trials on both the FS and TSP, the participants performed the experimental testing.

Figure 5.1: A 1.22 m wide by 7.32 m long tilted surface platform or TSP walkway with
10-degree slope for inducing INV and EVR foot-ankle complex movements during self-
paced gait trials; includes 6.10 m of covered half-inch rubber mats; simulated participant
trial during TSP right-foot INV and left-foot EVR.

5.2.3 Instrumentation and Participant Preparation

The experimental testing included measurements of ankle joint kinematics using 12

Bonita 10 camera 3D motion capture system (ViconTM, Oxford, UK) and eight StretchSenseTM

SRS (Auckland, New Zealand). The motion capture data was sampled at 200 Hz and the

SRS data was sampled at 25 Hz. The MotionMonitorTM (Innovative Sports Training, Inc.,
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Chicago, IL) was used in conjunction with ViconTM to capture, visualize, and assess the

motion capture data. For this study, both foot-ankle complexes were measured. During

testing, each participant was prepared by placing reflective motion capture marker clus-

ters on the right lower extremity for the foot and shank (lower leg) segments. Four SRS

were placed on each ankle and foot segment in a predetermined placement and orientation

configuration (POC) identified in Part II of “closing the wearable gap” [89].

5.2.3.1 SRS POCs

Prior to this study, four different POCs were determined based on bony landmarks and

movement patterns of the foot-ankle segment. The four POCs used herein were validated

using multiple statistical methods including R-Squared (R2) value and root-mean-squared

error (RMSE) in order to respectively assess relative and absolute goodness of fit for the

SRS placement against the golden standard of motion capture [89]. SRS POC donning at

rest during the start of a TSP trial is demonstrated in Figure 5.2. Figure 5.3 illustrates the

POC mounting of all four SRS for a single leg.

5.2.4 Experimental Procedures

Each participant was first instructed to read through a participation consent form and,

upon agreement to the expectations of the study methods, sign their approval as per IRB

protocol. Each participant was then asked to be seated in a chair-back seat and was given

two socks each with four, pre-placed SRS sensors attached to be worn on both feet. Each

sock corresponded to a specific leg; researchers ensured the appropriate sock was appropri-

ately placed on the correct leg. Moreover, researchers ensured all participants arrived for
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Figure 5.2: SRS placement and orientation configuration or SRS POC placement for the
(a) left and (b) back for a simulated participant at rest prior to a TSP gait trial; SRS POC
placement and motion capture marker set placement for the (c) left, (d) front, and (e) right
for stimulated seated participant.
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Figure 5.3: (a) PF SRS mounted on the dorsal surface and oriented towards the hallux (big
toe) to measure the downward movement of the foot; (b) DF SRS mounted on the heel of
the foot to measure the upward movement of the foot towards the lower leg; (c) INV SRS
mounted directly over the lateral malleolus (bony landmark on the lateral side of the ankle)
to measure the movement of the sole (bottom of the foot) towards the midline of the body;
(d) EVR SRS mounted directly over the medial malleolus (bony landmark on the medial
side of the ankle) [89]

.

the study with their own clean socks to be worn under the SRS donned socks for safety and

hygiene purposes. Participants were given a pair of small to medium or large to extra-large

socks depending on their shoe size. Following confirmation of proper sock application,

the motion capture cluster sensors were mounted to both right and left foot and right and

left shanks; following this, each participant assumed a neutral standing position, and the

sensors were then calibrated to each participant for 3D motion capture.

A validation step was conducted, where on both the FS and TSP, each participant per-

formed a minimum of two full gait cycles. For both surface types, the researchers con-

firmed that the 3D motion capture equipment and SRS donned socks were correctly cap-

turing movement data for right and left foot-ankle joints for sensor locations. Upon com-
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pletion of all validation steps, each participant was instructed to walk at a self-regulated

pace across the 6.10 m of the FS rubber matting resulting in a minimum of two full gait

cycles. The participant would then repeat the FS gait cycle for a total of six trials. After the

first cycle where the participant began in the south side of the HPL and ended the trial in

the north side, the participant was instructed to stand in place, turn around, and begin the

next trial by walking from the north side of the room and back to the south. This process

was repeated for each participant until all six FS trials were completed and a minimum of

three gait cycles were captured per trial.

Upon completion of the six FS trials, six more trials were then captured in the same

manner on the TSP across the 6.1 m of rubber matting secured to the platform. Since the

TSP sat at a 10-degree incline, as the participants began their trial from the south to north,

their left foot-ankle complex would be in an INV state and their right foot-ankle would

be in EVR. After the first trial was complete and the participant was asked to stop, turn

around, and walk the TSP from the north to south ends of the HPL, their left foot-ankle

complex would then be in EVR and their right in INV. This process was completed until

six trials (three trials with left leg INV and three trials with right leg INV) each with a

minimum of two gait cycles were captured thereby concluding the data collection for each

participant. A total of 12 trials (six on FS and six on TSP) were collected with a minimum

24 gait cycles recorded for each participant.

All participants were instructed to begin all gait trials with their right foot. A gait cycle

(or stride) begins with the first heel strike of one foot and ends at the following heel strike

of that same foot, and includes both the stance and swing phase for each leg [73, 113].
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For this study, because participants always started with the right foot, all gait cycles are

calculated between right heel strikes.

5.2.5 Data Preprocessing

A similar approach for preprocessing of the data was taken in [89]. Motion capture data

was collected at 200 Hz and smoothed with a 30 Hz Butterworth filter. StretchSenseTM data

was collected at roughly 25 Hz and was approximated and upsampled to 200 Hz to match

the sampling rate of the motion capture system. Following this, cross-correlation was

used to align the two datasets over time. Each foot was analyzed separately for each trial

to eliminate any potential delay that may occur between Bluetooth modules transmitted

data from StretchSenseTM, and mobile devices (i.e., smartphones, laptops) received the

Bluetooth data transmission. Further, only the DF and PF datasets from StretchSenseTM

SRS were used to determine the timing delay, as the INV and EVR data values did not

present linear results with the 3D motion capture due to the potential for coupling of foot

movements while some participants were walking (coupling is detailed further during the

Limitations Subsection). As was done for previous studies, line plots were created for each

of the preprocessed trials that were then validated by the researchers as having data aligned

adequately over time. Some datasets were hand-trimmed due to errors in the recording

systems where the 3D motion capture system would lose tracking of the participant, which

was sometimes experienced when a participant would walk too closely to the outside of

the capture space. Figure 5.4 provides an example of the formatted data for a participant’s

left foot when walking across a flat surface. Note that for cross-correlation, the PF and
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DF sensor outputs were compared individually to the motion capture flexion data output,

and the sensor that produced the highest autocorrelation coefficient of the two was used for

adjusting the delay between the SRS data output and the data from 3D motion capture.

After the data was resampled and time-aligned, individual gait cycles were extracted

from each of the trials. Due to the nature of gait cycles being unique for each participant,

there was not a typical pattern to easily detect for automating separation of each gait cycle.

To resolve this, each trial was reviewed in the MotionMonitorTM data playback software.

This playback option provided a visual illustration of what movement was occurring in the

motion capture system. The beginning of each gait cycle was marked as the beginning of

the right foot heel strike. When reviewing the MotionMonitorTM playback, frame numbers

were recorded for each point in the 3D motion capture data to mark the beginning and end

of each gait cycle. An example of this is illustrated in Figure 5.5. Based on the variable

stride length of the participants and the recommended walking path length for gait studies,

a minimum of two gait cycles were collected for each trial. When participant stride lengths

were shorter, a third gait cycle was collected as well. Three gait cycles were recorded for

80% of all the trials (190/238 trials). For the 20% of the trials where only two gait cycles

were collected, participants had longer stride lengths and were not able to complete a third

gait cycle within the 6.10 m walk space.

After the frame numbers were collected, they were then converted to seconds and used

to trim the preprocessed data into separate files, each representing individual gait cycles.

Finally, a third-order Savitzky–Golay filter was applied to the StretchSenseTM data for

smoothing. This filter was chosen as it is particularly effective at preserving minimum and
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Figure 5.4: (a) Scaled output of StretchSenseTM DF sensor output (capacitance) compared
to motion capture flexion output (degrees); (b) scaled output of StretchSenseTM PF sen-
sor output compared to the inverted motion capture flexion output; (c) scaled output of
StretchSenseTM INV sensor output compared to motion capture inversion output; (d) scaled
output of StretchSenseTM EVR sensor output compared to motion capture inversion output.
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Figure 5.5: Example of MotionMonitorTM playback used to record right heel strike frame
numbers. Pictured on the left is the frame where the first right foot heel strike occurs. On
the right are examples of the graphs depicting the output of the motion capture measure-
ments.

maximum values after filtering [90]. Further, this filter application has been used in other

applications for human motion analysis [19, 78, 4]. This filter was used to mitigate the

effects of the aliasing that occurred when upsampling the StretchSenseTM data to the same

sampling rate as the 3D motion capture data. A filter length of 39 was used as this produced

the best results when correlating the StretchSenseTM data to the 3D motion capture data.

An example of the improvements to the data made through this filtering is observed in

Figure 5.6.

5.2.6 Statistical Analysis

Initially, the analysis was performed one-at-a-time on a single sensor basis in a similar

manner as previous studies [89, 13]. In this approach, linear models were generated for
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Figure 5.6: (a) Upsampled StretchSenseTM gait cycle data for the left foot collected before
filtering. (b) Upsampled StretchSenseTM gait cycle data for the left foot after filtering
(third-order, window length of 39).

each individual sensor and compared to its corresponding movement (i.e., PF and DF sen-

sors modeled to motion capture flexion; INV and EVR sensors modeled to motion capture

inversion). DF and INV sensors were only compared to the positive angle values of the cor-

responding 3D motion capture data, while PF and EVR sensors were only compared to the

negative values of the corresponding data. However, researchers discovered that this ap-

proach led to poor results for gait assessment, due to the occurrence of multiple foot-ankle

movements at the same time. Due to the POC of the sensors, a coupling of movements oc-

curred where sensor output would be affected by foot-ankle movements that they were not

positioned to measure (e.g., a sensor positioned for flexion could also measure inversion

movements).
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Therefore, a multivariate linear model was developed to better predict the angle out-

put of the motion capture data. For predicting both flexion and inversion data, all four

sensors on each foot were used to predict the output of these two, primary foot-ankle

movements. Figures 5.7 and 5.8 illustrate the difference in prediction performance versus

motion, surface, and foot. Various combinations of multivariate linear models were inves-

tigated as well to determine how much prediction accuracy was lost with the removal of

different sensors. A model was developed where only PF and DF were used to predict

flexion motion, and INV and EVR were used to predict inversion motion. Further, models

were generated with each sensor removed individually. Results from all combinations of

multivariate linear models are depicted in Table 5.1.

5.3 Results

Table 5.1 provides a summary of the key performance statistics of the experiment. In

addition to using the root mean square error (RMSE) and adjusted R2 to determine mea-

surement performance as was done for previous experiments [89, 13], the mean absolute er-

ror (MAE) was added as a performance metric. MAE was found to be a desirable metric as

it still provides a measure of the prediction performance of the stretchable SRS but—unlike

RMSE—it does not add significant weight to large errors. Therefore, individual outliers

do not drastically penalize prediction performance. Similar to RMSE, MAE is negatively

oriented, so a lower value is better [43]. Including both metrics, in addition to adjusted R2,

provides an idea of how much prediction performance was affected by significant outliers

in the output of the SRS. The first column provides the mean and standard deviation MAE,
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RMSE, and adjusted R2 values when using all four SRS to predict inversion and flexion

of the foot. Additional columns were added to show the loss in performance when certain

sensors were removed from the model. The second column provides the performance re-

sults for using only the PF and DF SRS to predict flexion and using the INV and EVR SRS

to predict inversion. The last four columns give the performance results when one sensor

is removed when modeling both motions with the remaining three sensors.

Table 5.1: Results for various combinations of multivariate linear models to predict motion
output. Best results highlighted.

Statistic (◦) All Sensors
for each Motion

Two Sensors
for each Motion

No PF
Sensor

No DF
Sensor

No INV
Sensor

No EVR
Sensor

Mean MAE 1.54 1.96 1.85 1.88 1.81 1.89
Mean RMSE 1.96 2.45 2.36 2.34 2.29 2.36

Mean Adjusted R2 0.854 0.779 0.806 0.802 0.781 0.791
Standard Deviation MAE 0.612 0.761 0.790 0.848 0.683 0.753

Standard Deviation RMSE 0.779 0.935 1.030 1.030 0.849 0.920

Figure 5.7 presents violin plots showing a breakdown of the RMSE and MAE perfor-

mance against the motion being predicted, the foot that SRS was mounted to, and the sur-

face being walked on. These violin plots represent a kernel density distribution portrayed

vertically. A greater horizontal width of a curve in the plot indicates a greater portion

of participants that produced results near the value on the y-axis. More information on

these types of plots and their benefits when performing these kinds of assessments can be

found in Part II [89]. Violin plots of the adjusted R2 performance compared against these
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same factors can be seen in Figure 5.8. Adjusted R2 was used as an additional metric to

determine goodness-of-fit of the model, while also incorporating the model’s degrees of

freedom, accounting for the four sensors that are included in the model. It represents the

proportion of total variance explained by the model [33].

5.4 Discussion

Part II of the “closing the wearable gap” paper series explored basic, static movements

of the foot-ankle complex to assess optimal placement of stretchable SRS for mirroring

3D motion capture data as closely as possible. The results indicated two critical pieces

of information: (a) Where stretchable SRS should be positioned around bony landmarks

for optimal movement data capture and that (b) R2 and RMSE were excellent assessment

methodologies for indicating robustness of SRS output compared to 3D motion capture

output [89]. High R2 values indicate a successful relative measure of fit between sen-

sor placement and data versus the gold standard of 3D motion capture data. Whereas

low RMSE values indicated an absolute measure of fit between the two sets of data col-

lected about foot-ankle complex movement. Part III of the paper series explored a similar

stretchable SRS data collection method versus 3D motion capture study via fast, dynamic

movements such as expected and unexpected slips and trips. Goodness-of-fit was validated

again through high R2 and low RMSE for many of the study’s participants [13]. However,

some of the participants did not share the same robustness as others due to a myriad of

reasons mainly relating to technology (lower SRS refresh rates versus quicker movements)

and methodology (the jerky and abrupt stoppage of the dynamic movements challenging
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Figure 5.7: Violin plot of root mean square error (RMSE) and mean absolute error (MAE)
metric showing the mean and spread of results with respect to various factors. Flexion and
inversion columns represent the motion that was being predicted. Rows represent the two
types of surfaces the participant walked on. Left foot and right foot sensors are represented
in the graph as LF and RF, respectively.
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Figure 5.8: Violin plot of adjusted R2 metric showing mean and spread of results with
respect to various factors. Colored points represent individual participant means. Flexion
and inversion columns represent the motion that was being predicted. Rows represent
the two types of surfaces the participant walked on. Left foot and right foot sensors are
represented in the graph as LF and RF, respectively.
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the placement security of the motion tracking markers) limitations [13]. For this reason,

average R2 and RMSE values suffered across the population of all participants. RMSE

values suffer further due to the nature of this assessment methodology given that scores are

penalized more for more significant prediction errors—errors in this instance representing

the differences in movement capture data between the golden standard (3D motion cap-

ture) and the stretchable SRS. The desire to achieve goodness-of-fit while exploring all the

ways to evaluate the said fit were carefully considered for this study, Part IV, where lessons

learned were applied to the SRS capture of gait cycles.

The purpose of this study was to use 3D motion capture and stretchable SRS to collect

foot-ankle movement on participants as they performed walking gait cycles on both a flat

surface and a sloped platform with the primary goal being to assess the data output delta

between the gold standard and a new wearable sensor solution. SRS POC for the primary

foot-ankle movements (PF, DF, INV, and EVR) identified in Part II [89] were used, and

the data assessment methodologies detailed in Parts II and III where utilized and added

upon for this study [89, 13]. Given the complex nature of using a linear solution to accu-

rately quantify movement of a triaxial joint during a dynamic movement such as walking,

20 participants performing multiple walking trials were used. The participant gait trial

data was then upscaled (for the SRS), time-aligned (based on the right heel strike), and

smoothed using filtering methods. Due to the coupling of movements discovered in output

of the SRS data, the basic linear models utilized in the previous studies [89, 13] were de-

termined to not be successful for gait assessment. A multivariate linear model combined

with multiple linear models was developed to predict specific flexion better (from PF and
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DF) and inversion (INV and EVR) movements. With both data sets (3D motion capture

and SRS) properly aligned, researchers could return to standard assessment methods of

adjusted R2 and RMSE. A new assessment measure to compare the difference between

two continuous variables, MAE, was added to provide additional information that con-

tributes a complementary perspective to RMSE. Where RMSE penalizes the average more

when larger errors occur, errors found in MAE are penalized less. Since there is variability

within the gait cycle between all people [113]—there is value in using both methods. This

is further explained in the following subsections.

5.4.1 Mean MAE

For mean MAE, the lower the value, the closer the fit between the 3D motion capture

and stretchable SRS. A mean MAE score of 1.54 across flexion (PF and DF) and inversion

(INV and EVR) of both left and right feet for all 20 participants while walking on a flat

surface and a tilted platform is a positive result indicating a successful experiment. A low

mean MAE was achieved despite having outliers as a result of noisy data from the left foot

of two participants. Given that the right foot of these outlier participants didn’t generate

the same noisy output, this would seem to indicate that the issue was not with the individ-

uals performing the gait cycles but with the setup of either the 3D motion capture or the

attachment of the SRS (this will be discussed in more detail in the Limitations Subsection).

Despite the noisy data occurring on the left foot, the mean MAE was consistently higher

in all situations for the right foot, indicating slightly less goodness-of-fit for the right. The

right foot heel strike was the indicator for the beginning of the gait cycle and the alignment
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of the data, so an inference could be made that the right foot for all participants for all gait

cycles was more accurately aligned than the left foot. However, until more data is captured

on more participants, the reasoning behind a slightly worse fit for the right foot will require

further investigation. Regardless, there is room to improve upon this low mean MAE score

with continuous refinement of this study through the discovery and elimination of reasons

leading to outlier participant trials.

5.4.2 Mean RMSE

Mean RMSE will always be higher than the mean MAE due to the nature of squaring

the prediction error, as was indicated in the 1.96 score. Less accuracy between the joint

angle measurements calculated by the stretchable SRS versus the golden standard will in-

crease the overall mean RMSE score. For example, a 10-degree joint angle prediction error

will impact the appropriateness-of-fit score much more than a five-degree prediction error.

Whereas the mean MAE will be more forgiving of larger prediction errors treating them,

not equally, but less harshly in the fit score. Since every person has a unique gait [113],

the process of creating a wearable tool that accurately assesses movement at a complex,

triaxle joint such as the foot-ankle may indefinitely encounter prediction difficulties sim-

ply because of wide varieties in the anthropometry and gait cycles of people. Therefore,

utilizing the mean MAE for fit considers that not all errors may be preventable and should

not overly penalize the fit score.

However, given that the goal of this entire project and “closing the wearable gap” paper

series is to design a device that meets the needs of the practitioners by accurately capturing
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foot-ankle data “from the ground up” [60], then perhaps the more penalized score provided

by mean RMSE is a more realistic appropriation of fit. Variance by five degrees in the

calculation of a joint angle may not be viewed by a practitioner as problematic for flexion-

based movements given that the foot-ankle joint can move in much wider arcs in the sagittal

plane. However, perhaps a 10-degree joint angle prediction error in flexion is too high.

Likewise, the inversion angle movement within the frontal plane is far more limited in

range, and any degree of error may be too high given that a common ankle sprain, the

plantarflexion inversion, can occur at minimal joint angles. The point is to emphasize that

perhaps a more substantial penalty for larger errors warrants a worse fit score indicating

that further improvement is needed for practitioners to get the technology and data they’re

requesting to aid in the appropriate decision-making process for human health and safety.

5.4.3 Mean Adjusted R-Squared

Whereas mean MAE and RMSE indicate fit by lower scores, goodness-of-fit is shown

via the mean adjustedR2 by values closer to one. For this experiment, a score of 0.854 was

found indicating a good fit between SRS and 3D motion capture, and this was despite the

left and right foot outliers of participants’ gait cycles. Compared to the static movements

of the individual joint angles collected in Part II [89], however, the fit for dynamic gait

movements shows an increase in errors between 3D motion capture and when all four

sensors are donned.

113



www.manaraa.com

5.4.4 Stretch SRS Reduction Combinations

While using the capacitance values captured from all four SRS in the multivariate linear

model created promising fit scores, two and three SRS combinations created higher mean

MAE and RMSE values and lower mean adjusted R2 values indicating worse fit. The

purpose behind this part of the study was to understand if any sensor was largely redundant

considering that PF and DF are both movements that occur in the sagittal plane, and both

INV and EVR movements occur in the frontal plane. Again, stressing that the purpose of

this research is to create a wearable product using a unique type of sensor and noting that

the stretchable SRS are the costliest components in the said product, reducing the number

of sensors while retaining movement data accuracy would result in a positive economic

design decision. Reviewing the two and three SRS combinations in Table 5.1, however,

indicates that this research team is not yet ready to move away from the one-to-one ratio

of sensors to primary foot-ankle movements. All two and three sensor combinations result

in higher mean MAE and RSME scores and lower mean adjusted R2 scores. Surprisingly,

dropping the INV sensor provides the second-best mean MAE and RMSE. Given that PF

and INV provide the widest range of flexion and inversion movement types in the sagittal

and frontal planes respectively, researchers had initially hypothesized that DF and ENV

sensors seem to be the more likely candidates for sensor reduction options. Perhaps the

better score achieved when removing INV has more to do with the noisy participant outliers

than anything to do with the type of data collected at this foot-ankle movement. Likewise,

based on mean adjusted R2 scores, PF is the recommended sensor to remove. PF also

experienced a left foot participant outlier. While the researchers of this study will continue
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to assess solutions that remain accurate yet utilize fewer sensors, more work is needed first

to improve fit scores further before any sensors are removed from this wearable prototype

solution.

5.4.5 Limitations

While the extreme outliers visualized in the violin plots (Figures 5.7 and 5.8) were just

from the left feet of two participants and were primarily contained to the INV movement,

this noisiness in the SRS data resulted in a mean lower fit across all participants and all

feet walking across all surfaces. Upon careful inspection of the data from the participants,

the researchers suspect that the left foot of these participants was at or approaching the

edge of the motion tracking space, and therefore the resulting errors may have had more

to do with noise from the 3D motion capture data rather than issues from the SRS. Given

that all participants began all gait trials with their right heel strike, participants with longer

gait lengths were reaching the end of the 6.1 m walkway prior to the final footfall of their

left foot. Limitations of the lab space aside, this explanation may account for some of the

outliers; it does not account for all noise and coupling seen within the participant gait trial

data.

Considering all noise and coupling seen within the data results of the experiment, two

primary issues have been recognized by the researchers as areas for improvement needed

prior to the next SRS-based gait study: (a) Sensors were not pre-strained enough mean-

ing that some minimal movements were not captured because there was potential slack in

the SRS and (b) 3D motion capture errors occurred because the marker clusters were not
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mounted appropriately. As visualized in Figure 5.2b (for error demonstration) the partici-

pant’s right foot has a marker cluster that is more closely mounted over the toes instead of

being mounted behind the toes as on the left foot. Mounting the cluster over the toes may

increase recorded movement between the shank and the foot because, as the participant

flexes his or her toes, additional movements are recorded that would not have otherwise

occurred had the marker been secured to the top of the foot. This toe flexion or “toe-

curling” noise artificially creates movement where it should not be and therefore increase

the error between the SRS and what is supposed to be the gold standard.

Another limitation ties back to variance in participant gait patterns and stride length

(there is variability within different gait cycles of the same person and between the gait cy-

cles of different people [113]), and INV is more challenging to capture than PF. Depending

on the participant, INV interpretation may also be more challenging due to coupling of the

different movements due to the sensor position. As Figure 5.9 visualizes, coupling can oc-

cur—typically between the PF and INV SRS—but does not consistently occur on the same

foot or the same participant or across all gait cycles in a trial. When coupling does occur,

however, this, too, can lead to noisy data and outliers that reduce goodness-of-fit scores.

5.4.6 Future Work

Moving forward, there are still other approaches available to investigate to potentially

improve goodness-of-fit results even more. A decoupling coefficient matrix could be im-

plemented to potentially mitigate the influence of the coupled movements that are affecting

the SRS outputs. Further, there is a need to develop a more generic model that can pre-
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Figure 5.9: Sample participant data demonstrating a coupling effect between INV and PF
sensors of the right foot. PF is causing a decrease in the inversion value because tension is
being taken off the INV SRS during the gait movement. Therefore, as PF increases, INV
incorrectly decreases due to this coupling effect.
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dict values accurately across several sessions of using the SRS rather than a per-trial basis.

Deep learning techniques could also be applied to improve prediction accuracy. How-

ever, a much larger quantity of data will need to be collected for the in-depth learning

approach to be feasible. Additionally, a more consistent SRS mounting method will need

to be developed to ensure consistency between different data collection sessions when SRS

measurements are collected so that a deep learning model would be trained effectively. The

researchers are investigating a new hook and eye design to aid in consistency across SRS

mounting and to eliminate all future sensor pre-strain issues, thereby ensuring SRS can

only be mounted in one way to the sock fabric.

5.4.7 Conclusions

Upon completion of the participant trials, mean MAE, RMSE, and adjusted R2 were

used to determine relative, absolute, and general goodness of fit for the SRS output as

compared to the 3D motion capture. Robustness was determined by lower MAE and RMSE

scores and higher adjusted R2 scores. Violin plots were used to visualize the impact of

outlier participants while still showing a successful fit between a new wearable solution

and the gold standard of movement assessment.

Additional analyses were performed to determine if a two or three SRS combination

would provide similar fit scores but a reduced sensor count. Results indicate and expected

worse fit for any sensor combination outside of using all four SRS. However, the second-

best fit scores were a result of running assessments without INV for mean MAE and RMSE

and without PF for mean Adjusted R2, which is surprising given that these are the primary
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movements in their respective frontal and sagittal planes. Researchers perceive this to

have been largely impacted by data outliers caused by SRS sensors that were not properly

pre-strained or marker clusters placed too close to the participant’s toes. Regardless of the

challenges, this research team remains confident that an accurate gait assessment that rivals

the accuracy of 3D motion capture systems can still be achieved using only four off-the-

shelf SRS sensors. As is consistent with the Conclusions Section in Part II of the “closing

the wearable gap” paper series: “the solution verified on human participants within this

study essentially creates a real-time, continuous, and consistent electric goniometer that a

user can wear to assess their movements accurately” [89].
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

During initial testing, I was able to validate a very strong linear trend between extension

of a resistive SRS and electrical output (R2 ¿ 0.99). Going further, I found that temperature

had an effect on the base resistance of TPU-based SRS, but not silicone-based SRS. From

the range of 75−98◦ F a strong linear relationship still remained (R2=0.9239 for the worst

case). A micro-controller based measurement unit was developed to collect data from the

resistive SRS and was validated against a Micro-Ohm meter and confirmed to have good

accuracy (Average percent error: 1.55%). I then validated resistive SRS output against

planar movement of the joint ankle complex. The linear models measuring planar flexion

indicated good results with a p-value ¡ 0.001. However, when measuring movement in

the frontal plane, results could not be trusted as it could not inferred from the SRS output

whether INV or EVR was occuring. Additionally, when forcing both planar movements

on the mockup at the same time, it was not possible for a single SRS to differentiate the

two motions. It was also discovered that DF and PF could not both be measured in this

experiment due to limitations of the wooden model. The SRS could be mounted in a

manner that kept pre-strain throughout the entire range of motion without exceeding the

stretch limitations of the SRS. The next step moving forward was to investigate using SRS
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on a real foot, while using multiple SRS to account for the multiple planes of movement

and measure full ROM.

I then conducted a study involving ten participants to determine the optimal POC for

the SRS. Capacitive SRS were instead used for this study, and were validated against a

state-of-the-art motion capture system to determine their viability in measuring foot and

ankle kinematics. Four POCs were selected out of the ten POCs investigated in this study,

each one selected to measure a specific foot movement (PF, DF, INV, and EVR). While only

one POC was investigating for DF due to the small surface to work with, the POC was val-

idated as being strongly linear (mean R2=0.9567) and accurate (mean RMSE=1.0568◦).

For PF, POC 1 was selected for its optimal linearity (mean R2=0.9898) and accuracy

(mean RMSE=2.2996◦) as well as its robustness across participants (highest R2 for six

participants and lowest RMSE for five participants). For EVR, POC 2 was selected for

its optimal linearity (mean R2=0.9525) and accuracy (mean RMSE=1.5269), optimal con-

sistency in linearity and accuracy based on standard deviation, and robustness across par-

ticipants (highest R2 for seven participants and lowest RMSE for six participants). For

INV, both POC 1 and POC 2 were considered nearly equally optimal depending on which

factor was being considered, but ultimately POC 2 was chosen due to the consequential

symmetry with POC 2 of the EVR SRS. The INV POC 2 SRS had optimal linearity (mean

R2=0.9755) and optimal consistency in linearity and accuracy based on standard deviation.

An important observation from this study was that in some cases, particularly when per-

forming EVR, the participants could not always perfectly isolate the planar motion when

asked to perform it. This revealed the limitations of using a single sensor model to predict
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each movement, when due to the POC of the SRS and the nature of the foot, more than one

planar movement could affect the output of a single SRS.

After identifying optimal POCs, the SRS were validated against motion capture dur-

ing a gait study. Twenty participants were involved and each completed twelve trials, six

trials across a flat surface and six trials across a cross-sloped surface. Initial results using

a single sensor model indicated a decrease in accuracy and linearity of the sensor, likely

due to the coupling of movements that occurred during the triplanar motion when walk-

ing. Therefore, a multivariable linear model was investigated to mitigate this issue. This

involved developing linear models for both planes of movement using coefficients for all

four SRS. It was also discovered that the low sampling rate of the data collection module

was contributing to poor results due to aliasing of the data when upsampling to the record-

ing rate of the motion capture system. A Savitzky-Golay filter was applied to the SRS to

help smooth the output while preserving minimum and maximum values. Overall results

indicate that the SRS had a slight decline in linearity with planar movements (Mean Ad-

justed R2=0.854) but retained accuracy (mean RMSE=1.96) when using a multivariable

linear model. Models using two-SRS and three-SRS combinations were also investigated

to observe the decrease in accuracy. With the worst case being a modest linearity (mean

Adjusted R2=0.781) and high accuracy (mean RMSE=1.81◦) when the INV SRS is re-

moved from the model, there exists potential for future optimization through removing an

SRS that could be collecting redundant data.
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6.1 Contributions to the Field

Through my experience in this research I developed methods for mounting SRS to

socks, and I have documented the challenges that come with using SRS to measure foot

and ankle kinematics, such as data synchronization, coupling of SRS to multiple planes

of movement, and pre-strain of the SRS prior to the beginning of a trial. I developed an

experiment for measuring linearity of an SRS in a controlled setting for linear stretch as

well as stretch from a simulated PF and INV movement using a wooden mockup ankle.

Further, I identified optimal placement and orientation configuration (POC) for SRS on the

joint-ankle complex, which was then validated against the human gait cycle on a flat and

cross-sloped surface.

Through the experiments I conducted using SRS to predict joint angle data through

motion capture, I have developed a suite of scripts in R to automate the preprocessing

and analysis of the two collection methods. I will be publishing an open source project

consisting of this set of scripts along with the datasets collected from these studies so that

other researchers can reproduce these results and implement their own analysis to continue

improving the SRS model predictions. I will also be developing a guide providing tips

specific to curating a ”clean” dataset, giving examples of ways to ensure preprocessing of

the data is done correctly and how to deal with challenges regarding nuances in motion

capture data.
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6.2 Future Work

There remains plenty of work to continue this research effort. As new SRS are devel-

oped, they can be validated using the same experiments described in this project. For the

gait study dataset, researchers can investigate more advanced modeling techniques to fur-

ther improve the linearity and accuracy of the SRS model. A calibration method will need

to be developed so that the SRS can be used to predict joint angles without using motion

capture as a reference. A circuit will need to be developed that doesn’t use COTS products

from StretchSenseTM, to overcome the limited Bluetooth transmission rate that impacted

the results of the experiments in this project.

Ideally, another gait experiment would be performed on a treadmill, allowing the re-

searchers to collect a large amount of data that could be used to training a deep learning

model. Other deep learning applications would include classification of phases within the

gait cycle, determining positional and rotational data of body limb segments from SRS

similar to [48], and capturing performance metrics for exercises such as squatting, jump-

ing, and running. Since SRS has now been validated as a reliable method for measuring

kinematics at the ankle joint complex, this approach can be extended to measure kinematics

of other parts of the body, such as the knee joint, hip, upper body, arms, and wrists.
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[12] M. Chan, D. Estève, J.-Y. Fourniols, C. Escriba, and E. Campo, “Smart wearable
systems: Current status and future challenges,” Artificial intelligence in medicine,
vol. 56, no. 3, 2012, pp. 137–156.

[13] H. Chander, E. Stewart, D. Saucier, P. Nguyen, T. Luczak, J. E. Ball, A. C. Knight,
B. K. Smith, R. Prabhu, et al., “Closing the Wearable Gap—Part III: Use of Stretch
Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip
and Trip Perturbations,” Electronics, vol. 8, no. 10, 2019, p. 1083.

[14] E. Charry, M. Umer, and S. Taylor, “Design and validation of an ambulatory in-
ertial system for 3-D measurements of low back movements,” Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International
Conference on. IEEE, 2011, pp. 58–63.

[15] K. J. Chesnin, L. Selby-Silverstein, and M. P. Besser, “Comparison of an in-shoe
pressure measurement device to a force plate: concurrent validity of center of pres-
sure measurements,” Gait & posture, vol. 12, no. 2, 2000, pp. 128–133.

[16] B. Cole, “Zebra Technologies Partners with NFL to Track Player Move-
ments,”, http://www.fangraphs.com/techgraphs/zebra-technologies-partners-with-
nfl-to-track-player-movements/, 2015, Date accessed: Oct. 28, 2016.

[17] G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins, L. Kenney,
and D. Howard, “Inertial sensor-based knee flexion/extension angle estimation,”
Journal of biomechanics, vol. 42, no. 16, 2009, pp. 2678–2685.

[18] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of fast-reaching
movements by muscle synergy combinations,” Journal of Neuroscience, vol. 26, no.
30, 2006, pp. 7791–7810.

[19] N. Davey, A. Wixted, Y. Ohgi, and D. James, “A low cost self contained platform for
human motion analysis,” The impact of technology on sport II, 2008, pp. 101–111.

[20] S. M. M. De Rossi, N. Vitiello, T. Lenzi, R. Ronsse, B. Koopman, A. Persichetti,
F. Giovacchini, F. Vecchi, A. J. Ijspeert, H. van der Kooij, and M. C. Carrozza,
“Soft artificial tactile sensors for the measurement of human-robot interaction in the
rehabilitation of the lower limb,” 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology. 2010, pp. 1279–1282, IEEE.

126



www.manaraa.com

[21] M. Elbawab, J. Olesik, F. Aghazadeh, F. Amankrah, D. Horqque, and L. Zane, “Mo-
tion capture garment,”, jun 2017, WO Patent App. PCT/CA2016/051,398.

[22] H. G. Espinosa, J. Lee, and D. A. James, “The inertial sensor: A base platform for
wider adoption in sports science applications,” Journal of Fitness Research, vol. 4,
2015.

[23] M. Esposito, M. Macagno, and D. G. Vigano, “Sensors, interfaces and sensor sys-
tems for data collection and integrated remote monitoring of conditions at or near
body surfaces,”, jan 2015, US Patent 8,925,392.

[24] A. Filippeschi, N. Schmitz, M. Miezal, G. Bleser, E. Ruffaldi, and D. Stricker, “Sur-
vey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb
Human Motion,” Sensors, vol. 17, no. 6, 2017, p. 1257.

[25] R. Floyd and C. W. Thompson, Manual of Structural Kinesiology, 20th edition,
McGraw-Hill, New York, NY, 2018.

[26] F. Foerster, M. Smeja, and J. Fahrenberg, “Detection of posture and motion by
accelerometry: a validation study in ambulatory monitoring,” Computers in Human
Behavior, vol. 15, no. 5, 1999, pp. 571–583.

[27] D. T.-P. Fong and Y.-Y. Chan, “The use of wearable inertial motion sensors in
human lower limb biomechanics studies: a systematic review,” Sensors, vol. 10, no.
12, 2010, pp. 11556–11565.

[28] E. A. Fuller, “Center of pressure and its theoretical relationship to foot pathology,”
Journal of the American Podiatric Medical Association, vol. 89, no. 6, 1999, pp.
278–291.

[29] T. J. Gabbett, “Quantifying the physical demands of collision sports: does mi-
crosensor technology measure what it claims to measure?,” The Journal of Strength
& Conditioning Research, vol. 27, no. 8, 2013, pp. 2319–2322.

[30] T. A. Gisby, Smart artificial muscles, doctoral dissertation, University of Auckland,
2011.

[31] C. Glaros, D. I. Fotiadis, A. Likas, and A. Stafylopatis, “A wearable intelligent
system for monitoring health condition and rehabilitation of running athletes,” 4th
International IEEE EMBS Special Topic Conference on Information Technology Ap-
plications in Biomedicine, 2003., 2003, pp. 276–279.
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APPENDIX A

DERIVATION FOR MEASURING RESISTIVE SRS
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A.1 Derivation for Measuring Resistive SRS

The following equations provide a more detailed explanation of the mathematical cal-

culations used to determine the resistance of the Liquid Wire sensor in the Wheatstone

bridge circuit. Please refer to Figure 3.2 for circuit components.

V12 =
R2

R1 +R2

× Vsupply (A.1)

V34 =
RLiquidWire

R3 +RLiquidWire

× Vsupply (A.2)

V12 + Vmeasured − V34 = 0 (A.3)

Vmeasured = V34 − V12 (A.4)

Vmeasured =
RLiquidWire

R3 +RLiquidWire

× Vsupply −
R2

R1 +R2

× Vsupply (A.5)

Vmeasured
Vsupply

=
RLiquidWire

R3 +RLiquidWire

− R2

R1 +R2

(A.6)

Vmeasured
Vsupply

+
R2

R1 +R2

=
RLiquidWire

R3 +RLiquidWire

(A.7)

α =
Vmeasured
Vsupply

+
R2

R1 +R2

(A.8)

α =
RLiquidWire

R3 +RLiquidWire

(A.9)

R3 ∗ α +RLiquidWire × α = RLiquidWire (A.10)

R3 ∗ α = RLiquidWire × (1 − α) (A.11)

RLiquidWire =
R3 × α

1 − α
(A.12)
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